BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32503430)

  • 21. Molecular archeology of an SP100 splice variant revisited: dating the retrotranscription and Alu insertion events.
    Devor EJ
    Genome Biol; 2001; 2(9):RESEARCH0040. PubMed ID: 11574059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From "junk" to gene: curriculum vitae of a primate receptor isoform gene.
    Singer SS; Männel DN; Hehlgans T; Brosius J; Schmitz J
    J Mol Biol; 2004 Aug; 341(4):883-6. PubMed ID: 15328599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-traditional Alu evolution and primate genomic diversity.
    Roy-Engel AM; Carroll ML; El-Sawy M; Salem AH; Garber RK; Nguyen SV; Deininger PL; Batzer MA
    J Mol Biol; 2002 Mar; 316(5):1033-40. PubMed ID: 11884141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates.
    Gombart AF; Saito T; Koeffler HP
    BMC Genomics; 2009 Jul; 10():321. PubMed ID: 19607716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gain of new exons and promoters by lineage-specific transposable elements-integration and conservation event on CHRM3 gene.
    Huh JW; Kim YH; Lee SR; Kim H; Kim DS; Kim HS; Kang HS; Chang KT
    Mol Cells; 2009 Aug; 28(2):111-7. PubMed ID: 19669628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements.
    Mersch B; Sela N; Ast G; Suhai S; Hotz-Wagenblatt A
    BMC Genet; 2007 Nov; 8():78. PubMed ID: 17986331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome.
    Sela N; Mersch B; Gal-Mark N; Lev-Maor G; Hotz-Wagenblatt A; Ast G
    Genome Biol; 2007; 8(6):R127. PubMed ID: 17594509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recently integrated Alu elements and human genomic diversity.
    Salem AH; Kilroy GE; Watkins WS; Jorde LB; Batzer MA
    Mol Biol Evol; 2003 Aug; 20(8):1349-61. PubMed ID: 12777511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of a splice variant that acts as an endogenous antagonist of the original INSL3 in primates.
    Yang N; Chen H; Hu M; Zhang G; Amanullah ; Deng C
    Gene; 2020 Sep; 754():144861. PubMed ID: 32531454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative analysis of Alu repeats in primate genomes.
    Liu GE; Alkan C; Jiang L; Zhao S; Eichler EE
    Genome Res; 2009 May; 19(5):876-85. PubMed ID: 19411604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ExoPLOT: Representation of alternative splicing in human tissues and developmental stages with transposed element (TE) involvement.
    Zhang F; Raabe CA; Cardoso-Moreira M; Brosius J; Kaessmann H; Schmitz J
    Genomics; 2022 Jul; 114(4):110434. PubMed ID: 35863675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minimal conditions for exonization of intronic sequences: 5' splice site formation in alu exons.
    Sorek R; Lev-Maor G; Reznik M; Dagan T; Belinky F; Graur D; Ast G
    Mol Cell; 2004 Apr; 14(2):221-31. PubMed ID: 15099521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MECP2, a gene associated with Rett syndrome in humans, shows conserved coding regions, independent Alu insertions, and a novel transcript across primate evolution.
    Viana MC; Menezes AN; Moreira MA; Pissinatti A; Seuánez HN
    BMC Genet; 2015 Jul; 16():77. PubMed ID: 26148505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transposable element fragments in protein-coding regions and their contributions to human functional proteins.
    Wu M; Li L; Sun Z
    Gene; 2007 Oct; 401(1-2):165-71. PubMed ID: 17716834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenetic affinities of tarsier in the context of primate Alu repeats.
    Zietkiewicz E; Richer C; Labuda D
    Mol Phylogenet Evol; 1999 Feb; 11(1):77-83. PubMed ID: 10082612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The contribution of Alu exons to the human proteome.
    Lin L; Jiang P; Park JW; Wang J; Lu ZX; Lam MP; Ping P; Xing Y
    Genome Biol; 2016 Jan; 17():15. PubMed ID: 26821878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative splicing in lecithin:cholesterol acyltransferase mRNA: an evolutionary paradigm in humans and great apes.
    Miller M; Zeller K
    Gene; 1997 May; 190(2):309-13. PubMed ID: 9197549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons.
    Lev-Maor G; Sorek R; Shomron N; Ast G
    Science; 2003 May; 300(5623):1288-91. PubMed ID: 12764196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-read direct RNA sequencing by 5'-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts.
    Jiang F; Zhang J; Liu Q; Liu X; Wang H; He J; Kang L
    RNA Biol; 2019 Jul; 16(7):950-959. PubMed ID: 30982421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive analysis of two Alu Yd subfamilies.
    Xing J; Salem AH; Hedges DJ; Kilroy GE; Watkins WS; Schienman JE; Stewart CB; Jurka J; Jorde LB; Batzer MA
    J Mol Evol; 2003; 57 Suppl 1():S76-89. PubMed ID: 15008405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.