These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 32503474)

  • 1. Matrix factorization with neural network for predicting circRNA-RBP interactions.
    Wang Z; Lei X
    BMC Bioinformatics; 2020 Jun; 21(1):229. PubMed ID: 32503474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.
    Lasantha D; Vidanagamachchi S; Nallaperuma S
    Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iCRBP-LKHA: Large convolutional kernel and hybrid channel-spatial attention for identifying circRNA-RBP interaction sites.
    Yuan L; Zhao L; Lai J; Jiang Y; Zhang Q; Shen Z; Zheng CH; Huang DS
    PLoS Comput Biol; 2024 Aug; 20(8):e1012399. PubMed ID: 39173070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression.
    Okholm TLH; Sathe S; Park SS; Kamstrup AB; Rasmussen AM; Shankar A; Chua ZM; Fristrup N; Nielsen MM; Vang S; Dyrskjøt L; Aigner S; Damgaard CK; Yeo GW; Pedersen JS
    Genome Med; 2020 Dec; 12(1):112. PubMed ID: 33287884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Cancer-Specific circRNA-RBP Binding Sites Based on Deep Learning.
    Wang Z; Lei X; Wu FX
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31703384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network.
    Liu L; Wei Y; Tan Z; Zhang Q; Sun J; Zhao Q
    Interdiscip Sci; 2024 Sep; 16(3):635-648. PubMed ID: 38381315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.
    Wang Z; Lei X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying the sequence specificities of circRNA-binding proteins based on a capsule network architecture.
    Wang Z; Lei X
    BMC Bioinformatics; 2021 Jan; 22(1):19. PubMed ID: 33413092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepciRGO: functional prediction of circular RNAs through hierarchical deep neural networks using heterogeneous network features.
    Deng L; Lin W; Wang J; Zhang J
    BMC Bioinformatics; 2020 Nov; 21(1):519. PubMed ID: 33183227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SGANRDA: semi-supervised generative adversarial networks for predicting circRNA-disease associations.
    Wang L; Yan X; You ZH; Zhou X; Li HY; Huang YA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33734296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network.
    Wu H; Pan X; Yang Y; Shen HB
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.
    Niu M; Zou Q; Lin C
    PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework.
    Xiao Q; Luo J; Dai J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MSTCRB: Predicting circRNA-RBP interaction by extracting multi-scale features based on transformer and attention mechanism.
    Zhou Y; Cui H; Liu D; Wang W
    Int J Biol Macromol; 2024 Oct; 278(Pt 2):134805. PubMed ID: 39153682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PASSION: an ensemble neural network approach for identifying the binding sites of RBPs on circRNAs.
    Jia C; Bi Y; Chen J; Leier A; Li F; Song J
    Bioinformatics; 2020 Aug; 36(15):4276-4282. PubMed ID: 32426818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of RNA binding protein interacting with circular RNA and hub candidate network for hepatocellular carcinoma.
    Cheng B; Tian J; Chen Y
    Aging (Albany NY); 2021 Jun; 13(12):16124-16143. PubMed ID: 34133325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.