These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 32503474)
21. DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks. Yuan L; Yang Y Front Genet; 2020; 11():632861. PubMed ID: 33552144 [TBL] [Abstract][Full Text] [Related]
22. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network. Wang Z; Lei X Methods; 2022 Sep; 205():179-190. PubMed ID: 35810958 [TBL] [Abstract][Full Text] [Related]
23. CircSSNN: circRNA-binding site prediction via sequence self-attention neural networks with pre-normalization. Cao C; Yang S; Li M; Li C BMC Bioinformatics; 2023 May; 24(1):220. PubMed ID: 37254080 [TBL] [Abstract][Full Text] [Related]
24. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association. Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853 [TBL] [Abstract][Full Text] [Related]
25. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. Zang J; Lu D; Xu A J Neurosci Res; 2020 Jan; 98(1):87-97. PubMed ID: 30575990 [TBL] [Abstract][Full Text] [Related]
26. An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network. Deepthi K; Jereesh AS Gene; 2020 Dec; 762():145040. PubMed ID: 32777520 [TBL] [Abstract][Full Text] [Related]
27. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion. Fan C; Lei X; Pan Y Front Genet; 2020; 11():540751. PubMed ID: 33193615 [TBL] [Abstract][Full Text] [Related]
28. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features. Zhang L; Lu C; Zeng M; Li Y; Wang J Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222 [TBL] [Abstract][Full Text] [Related]
29. RNA-binding protein recognition based on multi-view deep feature and multi-label learning. Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039 [TBL] [Abstract][Full Text] [Related]
30. iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network. Yang Y; Hou Z; Ma Z; Li X; Wong KC Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126261 [TBL] [Abstract][Full Text] [Related]
31. SSCRB: Predicting circRNA-RBP Interaction Sites Using a Sequence and Structural Feature-Based Attention Model. Liu L; Wei Y; Zhang Q; Zhao Q IEEE J Biomed Health Inform; 2024 Mar; 28(3):1762-1772. PubMed ID: 38224504 [TBL] [Abstract][Full Text] [Related]
32. A novel circRNA-miRNA association prediction model based on structural deep neural network embedding. Guo LX; You ZH; Wang L; Yu CQ; Zhao BW; Ren ZH; Pan J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088547 [TBL] [Abstract][Full Text] [Related]
33. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network. Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638 [TBL] [Abstract][Full Text] [Related]
34. CircSLNN: Identifying RBP-Binding Sites on circRNAs Ju Y; Yuan L; Yang Y; Zhao H Front Genet; 2019; 10():1184. PubMed ID: 31824574 [TBL] [Abstract][Full Text] [Related]
35. Decoding protein binding landscape on circular RNAs with base-resolution transformer models. Wu H; Liu X; Fang Y; Yang Y; Huang Y; Pan X; Shen HB Comput Biol Med; 2024 Mar; 171():108175. PubMed ID: 38402841 [TBL] [Abstract][Full Text] [Related]
36. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. Wang L; You ZH; Li YM; Zheng K; Huang YA PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655 [TBL] [Abstract][Full Text] [Related]
37. Prediction of circRNA-disease associations based on inductive matrix completion. Li M; Liu M; Bin Y; Xia J BMC Med Genomics; 2020 Apr; 13(Suppl 5):42. PubMed ID: 32241268 [TBL] [Abstract][Full Text] [Related]
38. Prediction of circRNA-MiRNA Association Using Singular Value Decomposition and Graph Neural Networks. Qian Y; Zheng J; Jiang Y; Li S; Deng L IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3461-3468. PubMed ID: 36395130 [TBL] [Abstract][Full Text] [Related]
39. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. Dudekula DB; Panda AC; Grammatikakis I; De S; Abdelmohsen K; Gorospe M RNA Biol; 2016; 13(1):34-42. PubMed ID: 26669964 [TBL] [Abstract][Full Text] [Related]
40. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. Zhang Y; Wang Z; Wei H; Chen M BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]