BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 32503917)

  • 1. Phosphorylation barcode-dependent signal bias of the dopamine D1 receptor.
    Kaya AI; Perry NA; Gurevich VV; Iverson TM
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14139-14149. PubMed ID: 32503917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Elimination of G Proteins and Arrestins Defines Their Specific Contributions to Both Intensity and Duration of G Protein-coupled Receptor Signaling.
    Alvarez-Curto E; Inoue A; Jenkins L; Raihan SZ; Prihandoko R; Tobin AB; Milligan G
    J Biol Chem; 2016 Dec; 291(53):27147-27159. PubMed ID: 27852822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
    Paradis JS; Ly S; Blondel-Tepaz É; Galan JA; Beautrait A; Scott MG; Enslen H; Marullo S; Roux PP; Bouvier M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):E5160-8. PubMed ID: 26324936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of β-arrestin2 at Thr
    Cassier E; Gallay N; Bourquard T; Claeysen S; Bockaert J; Crépieux P; Poupon A; Reiter E; Marin P; Vandermoere F
    Elife; 2017 Feb; 6():. PubMed ID: 28169830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation and nuclear translocation of ERK1/2 by the formyl peptide receptor is regulated by G protein and is not dependent on beta-arrestin translocation or receptor endocytosis.
    Gripentrog JM; Miettinen HM
    Cell Signal; 2005 Oct; 17(10):1300-11. PubMed ID: 16038804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrestin-dependent activation of ERK and Src family kinases.
    Strungs EG; Luttrell LM
    Handb Exp Pharmacol; 2014; 219():225-57. PubMed ID: 24292833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling.
    Charest PG; Oligny-Longpré G; Bonin H; Azzi M; Bouvier M
    Cell Signal; 2007 Jan; 19(1):32-41. PubMed ID: 16857342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor.
    Conroy JL; Free RB; Sibley DR
    ACS Chem Neurosci; 2015 Apr; 6(4):681-92. PubMed ID: 25660762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of N-Formyl Peptide Receptor Signaling and Trafficking by Arrestin-Src Kinase Interaction.
    Wagener BM; Marjon NA; Prossnitz ER
    PLoS One; 2016; 11(1):e0147442. PubMed ID: 26788723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G Protein and β-arrestin signaling bias at the ghrelin receptor.
    Evron T; Peterson SM; Urs NM; Bai Y; Rochelle LK; Caron MG; Barak LS
    J Biol Chem; 2014 Nov; 289(48):33442-55. PubMed ID: 25261469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor.
    Nakajima K; Wess J
    Mol Pharmacol; 2012 Oct; 82(4):575-82. PubMed ID: 22821234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropeptide Y receptor mediates activation of ERK1/2 via transactivation of the IGF receptor.
    Lecat S; Belemnaba L; Galzi JL; Bucher B
    Cell Signal; 2015 Jul; 27(7):1297-304. PubMed ID: 25817573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation.
    Gesty-Palmer D; Chen M; Reiter E; Ahn S; Nelson CD; Wang S; Eckhardt AE; Cowan CL; Spurney RF; Luttrell LM; Lefkowitz RJ
    J Biol Chem; 2006 Apr; 281(16):10856-64. PubMed ID: 16492667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic interactions of dopamine D1 and glutamate NMDA receptors in rat hippocampus and prefrontal cortex: involvement of ERK1/2 signaling.
    Sarantis K; Matsokis N; Angelatou F
    Neuroscience; 2009 Nov; 163(4):1135-45. PubMed ID: 19647050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes.
    Luttrell LM; Ferguson SS; Daaka Y; Miller WE; Maudsley S; Della Rocca GJ; Lin F; Kawakatsu H; Owada K; Luttrell DK; Caron MG; Lefkowitz RJ
    Science; 1999 Jan; 283(5402):655-61. PubMed ID: 9924018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the signaling features of the multi-protein complex GPCR/β-arrestin/ERK1/2.
    Carmona-Rosas G; Alcántara-Hernández R; Hernández-Espinosa DA
    Eur J Cell Biol; 2018 Jun; 97(5):349-358. PubMed ID: 29665971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delineation of G Protein-Coupled Receptor Kinase Phosphorylation Sites within the D
    Moritz AE; Madaras NS; Rankin ML; Inbody LR; Sibley DR
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive ERK1/2 activation by a chimeric neurokinin 1 receptor-beta-arrestin1 fusion protein. Probing the composition and function of the G protein-coupled receptor "signalsome".
    Jafri F; El-Shewy HM; Lee MH; Kelly M; Luttrell DK; Luttrell LM
    J Biol Chem; 2006 Jul; 281(28):19346-57. PubMed ID: 16670094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational insights into ligand-induced G protein and β-arrestin signaling of the dopamine D1 receptor.
    Li H; Urs NM; Horenstein N
    J Comput Aided Mol Des; 2023 Jun; 37(5-6):227-244. PubMed ID: 37060492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. beta-Arrestin 2 expression determines the transcriptional response to lysophosphatidic acid stimulation in murine embryo fibroblasts.
    Gesty-Palmer D; El Shewy H; Kohout TA; Luttrell LM
    J Biol Chem; 2005 Sep; 280(37):32157-67. PubMed ID: 16027114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.