These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. An Active and Regenerable Nanometric High-Entropy Catalyst for Efficient Propane Dehydrogenation. Zhou SZ; Li WC; He B; Xie YD; Wang H; Liu X; Chen L; Wei J; Lu AH Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202410835. PubMed ID: 39044707 [TBL] [Abstract][Full Text] [Related]
5. Thermally Stable and Regenerable Platinum-Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Xiong H; Lin S; Goetze J; Pletcher P; Guo H; Kovarik L; Artyushkova K; Weckhuysen BM; Datye AK Angew Chem Int Ed Engl; 2017 Jul; 56(31):8986-8991. PubMed ID: 28598531 [TBL] [Abstract][Full Text] [Related]
6. Subsurface-Regulated PtGa Nanoparticles Confined in Silicalite-1 for Propane Dehydrogenation. Zhang B; Zheng L; Zhai Z; Li G; Liu G ACS Appl Mater Interfaces; 2021 Apr; 13(14):16259-16266. PubMed ID: 33813832 [TBL] [Abstract][Full Text] [Related]
7. Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation. Nakaya Y; Furukawa S Chempluschem; 2022 Feb; 87(4):e202100560. PubMed ID: 35194957 [TBL] [Abstract][Full Text] [Related]
8. Modeling the Selectivity of Hydrotalcite-Based Catalyst in the Propane Dehydrogenation Reaction. Festa G; Contaldo P; Martino M; Meloni E; Palma V Ind Eng Chem Res; 2023 Oct; 62(41):16622-16637. PubMed ID: 37869418 [TBL] [Abstract][Full Text] [Related]
9. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO Xing F; Ma J; Shimizu KI; Furukawa S Nat Commun; 2022 Aug; 13(1):5065. PubMed ID: 36038619 [TBL] [Abstract][Full Text] [Related]
10. Close Intimacy between PtIn Clusters and Zeolite Channels for Ultrastability toward Propane Dehydrogenation. Luo L; Zhou T; Li W; Li X; Yan H; Chen W; Xu Q; Hu S; Ma C; Bao J; Pao CW; Wang Z; Li H; Ma X; Luo L; Zeng J Nano Lett; 2024 Jun; ():. PubMed ID: 38837959 [TBL] [Abstract][Full Text] [Related]
11. Electroassisted Propane Dehydrogenation at Low Temperatures: Far beyond the Equilibrium Limitation. Zhang J; Ma R; Ham H; Shimizu KI; Furukawa S JACS Au; 2021 Oct; 1(10):1688-1693. PubMed ID: 34723271 [TBL] [Abstract][Full Text] [Related]
12. Reactive Force Field Development for Propane Dehydrogenation on Platinum Surfaces. Salom-Català A; Strugovshchikov E; Kaźmierczak K; Curulla-Ferré D; Ricart JM; Carbó JJ J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(7):2844-2855. PubMed ID: 38414834 [TBL] [Abstract][Full Text] [Related]
13. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper. Han Z; Li S; Jiang F; Wang T; Ma X; Gong J Nanoscale; 2014 Sep; 6(17):10000-8. PubMed ID: 24933477 [TBL] [Abstract][Full Text] [Related]
14. Surface Hexagonal Pt Ye C; Peng M; Wang Y; Zhang N; Wang D; Jiao M; Miller JT ACS Appl Mater Interfaces; 2020 Jun; 12(23):25903-25909. PubMed ID: 32423194 [TBL] [Abstract][Full Text] [Related]
15. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation. Yang T; Zhong Y; Li J; Ma R; Yan H; Liu Y; He Y; Li D ACS Appl Mater Interfaces; 2021 Jul; 13(28):33045-33055. PubMed ID: 34232010 [TBL] [Abstract][Full Text] [Related]
16. Non-Classical Deactivation Mechanism in a Supported Intermetallic Catalyst for Propane Dehydrogenation. Tian J; Kong R; Deng B; Cheng Y; Hu K; Zhong Z; Sun T; Tan M; Chen L; Zhao J; Wang Y; Li X; Zhu Y Angew Chem Int Ed Engl; 2024 Oct; 63(41):e202409556. PubMed ID: 38988065 [TBL] [Abstract][Full Text] [Related]
17. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636 [TBL] [Abstract][Full Text] [Related]
18. Overcoming limitations in propane dehydrogenation by codesigning catalyst-membrane systems. Almallahi R; Wortman J; Linic S Science; 2024 Mar; 383(6689):1325-1331. PubMed ID: 38513015 [TBL] [Abstract][Full Text] [Related]
19. Selective and Stable Non-Noble-Metal Intermetallic Compound Catalyst for the Direct Dehydrogenation of Propane to Propylene. He Y; Song Y; Cullen DA; Laursen S J Am Chem Soc; 2018 Oct; 140(43):14010-14014. PubMed ID: 30346723 [TBL] [Abstract][Full Text] [Related]
20. Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-oxidative Propane Dehydrogenation. Kong N; Fan X; Liu F; Wang L; Lin H; Li Y; Lee ST ACS Nano; 2020 May; 14(5):5772-5779. PubMed ID: 32374154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]