These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 32504044)
41. CD44v3-v10 reduces the profibrotic effects of TGF-β1 and attenuates tubular injury in the early stage of chronic obstructive nephropathy. Rampanelli E; Rouschop K; Teske GJ; Claessen N; Leemans JC; Florquin S Am J Physiol Renal Physiol; 2013 Nov; 305(10):F1445-54. PubMed ID: 24026183 [TBL] [Abstract][Full Text] [Related]
42. Preparation and evaluation of anti-renal fibrosis activity of novel truncated TGF-β receptor type II. Liu H; Zhang Z; Li Y; Wang X; Zhang Y; Chu Y; Yuan X; Wang X Biotechnol Appl Biochem; 2018 Nov; 65(6):834-840. PubMed ID: 30066965 [TBL] [Abstract][Full Text] [Related]
43. Peptide DR8 suppresses epithelial-to-mesenchymal transition via the TGF-β/MAPK signaling pathway in renal fibrosis. Deng B; Yang W; Wang D; Cheng L; Bu L; Rao J; Zhang J; Xie J; Zhang B Life Sci; 2020 Nov; 261():118465. PubMed ID: 32956665 [TBL] [Abstract][Full Text] [Related]
44. Paeoniflorin of Paeonia lactiflora prevents renal interstitial fibrosis induced by unilateral ureteral obstruction in mice. Zeng J; Dou Y; Guo J; Wu X; Dai Y Phytomedicine; 2013 Jun; 20(8-9):753-9. PubMed ID: 23535189 [TBL] [Abstract][Full Text] [Related]
45. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis. Jin L; Yu B; Liu G; Nie W; Wang J; Chen J; Xiao L; Xia H; Han F; Yang Y FASEB J; 2022 Jun; 36(6):e22342. PubMed ID: 35524750 [TBL] [Abstract][Full Text] [Related]
46. MiR-200b/c family inhibits renal fibrosis through modulating epithelial-to-mesenchymal transition via targeting fascin-1/CD44 axis. Fu H; Gu YH; Yang YN; Liao S; Wang GH Life Sci; 2020 Jul; 252():117589. PubMed ID: 32220622 [TBL] [Abstract][Full Text] [Related]
47. Sphingosine kinase 1 protects renal tubular epithelial cells from renal fibrosis via induction of autophagy. Du C; Ren Y; Yao F; Duan J; Zhao H; Du Y; Xiao X; Duan H; Shi Y Int J Biochem Cell Biol; 2017 Sep; 90():17-28. PubMed ID: 28733250 [TBL] [Abstract][Full Text] [Related]
48. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis. Li YK; Ma DX; Wang ZM; Hu XF; Li SL; Tian HZ; Wang MJ; Shu YW; Yang J Pharmacol Res; 2018 May; 131():102-111. PubMed ID: 29530599 [TBL] [Abstract][Full Text] [Related]
49. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition. Cho JH; Ryu HM; Oh EJ; Yook JM; Ahn JS; Jung HY; Choi JY; Park SH; Kim YL; Kwak IS; Kim CD PLoS One; 2016; 11(9):e0162186. PubMed ID: 27607429 [TBL] [Abstract][Full Text] [Related]
50. Exosomal let-7b-5p deriving from parietal epithelial cells attenuate renal fibrosis through suppression of TGFβR1 and ARID3a in obstructive kidney disease. Song A; Wang M; Xie K; Lu J; Zhao B; Wu W; Qian C; Hong W; Gu L FASEB J; 2024 Oct; 38(19):e70085. PubMed ID: 39352691 [TBL] [Abstract][Full Text] [Related]
51. Suppression of TRPM2 reduces renal fibrosis and inflammation through blocking TGF-β1-regulated JNK activation. Wang Y; Chen L; Wang K; Da Y; Zhou M; Yan H; Zheng D; Zhong S; Cai S; Zhu H; Li Y Biomed Pharmacother; 2019 Dec; 120():109556. PubMed ID: 31655312 [TBL] [Abstract][Full Text] [Related]
52. Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial-mesenchymal transition. Zhao Y; Qiao X; Tan TK; Zhao H; Zhang Y; Liu L; Zhang J; Wang L; Cao Q; Wang Y; Wang Y; Wang YM; Lee VWS; Alexander SI; Harris DCH; Zheng G Nephrol Dial Transplant; 2017 May; 32(5):781-791. PubMed ID: 27566305 [TBL] [Abstract][Full Text] [Related]
53. Transforming growth factor-β1 stimulates hedgehog signaling to promote epithelial-mesenchymal transition after kidney injury. Lu H; Chen B; Hong W; Liang Y; Bai Y FEBS J; 2016 Oct; 283(20):3771-3790. PubMed ID: 27579669 [TBL] [Abstract][Full Text] [Related]
56. TGF-β1-activated kinase-1 regulates inflammation and fibrosis in the obstructed kidney. Ma FY; Tesch GH; Ozols E; Xie M; Schneider MD; Nikolic-Paterson DJ Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1410-21. PubMed ID: 21367917 [TBL] [Abstract][Full Text] [Related]
57. Micro-vesicles from mesenchymal stem cells over-expressing miR-34a inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition in renal tubular epithelial cells in vitro. He J; Jiang YL; Wang Y; Tian XJ; Sun SR Chin Med J (Engl); 2020 Apr; 133(7):800-807. PubMed ID: 32149762 [TBL] [Abstract][Full Text] [Related]
58. Opposite role of CD44-standard and CD44-variant-3 in tubular injury and development of renal fibrosis during chronic obstructive nephropathy. Rampanelli E; Rouschop KM; Claessen N; Teske GJ; Pals ST; Leemans JC; Florquin S Kidney Int; 2014 Sep; 86(3):558-69. PubMed ID: 24717295 [TBL] [Abstract][Full Text] [Related]
59. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. Xianyuan L; Wei Z; Yaqian D; Dan Z; Xueli T; Zhanglu D; Guanyi L; Lan T; Menghua L Phytomedicine; 2019 Feb; 53():274-285. PubMed ID: 30668407 [TBL] [Abstract][Full Text] [Related]
60. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Bozic M; Caus M; Rodrigues-Diez RR; Pedraza N; Ruiz-Ortega M; Garí E; Gallel P; Panadés MJ; Martinez A; Fernández E; Valdivielso JM Nat Commun; 2020 Apr; 11(1):1943. PubMed ID: 32327648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]