These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 32504120)
1. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Raetz M; Bonner R; Hopfgartner G Metabolomics; 2020 Jun; 16(6):71. PubMed ID: 32504120 [TBL] [Abstract][Full Text] [Related]
3. Concomitant investigation of crustacean amphipods lipidome and metabolome during the molting cycle by Zeno SWATH data-independent acquisition coupled with electron activated dissociation and machine learning. Brunet TA; Clément Y; Calabrese V; Lemoine J; Geffard O; Chaumot A; Degli-Esposti D; Salvador A; Ayciriex S Anal Chim Acta; 2024 May; 1304():342533. PubMed ID: 38637034 [TBL] [Abstract][Full Text] [Related]
4. Using Data-Dependent and -Independent Hybrid Acquisitions for Fast Liquid Chromatography-Based Untargeted Lipidomics. Tokiyoshi K; Matsuzawa Y; Takahashi M; Takeda H; Hasegawa M; Miyamoto J; Tsugawa H Anal Chem; 2024 Jan; 96(3):991-996. PubMed ID: 38206184 [TBL] [Abstract][Full Text] [Related]
5. Prioritize biologically relevant ions for data-independent acquisition (BRI-DIA) in LC-MS/MS-based lipidomics analysis. Duan L; Scheidemantle G; Lodge M; Cummings MJ; Pham E; Wang X; Kennedy A; Liu X Metabolomics; 2022 Jul; 18(8):55. PubMed ID: 35842862 [TBL] [Abstract][Full Text] [Related]
6. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry. Arnhard K; Gottschall A; Pitterl F; Oberacher H Anal Bioanal Chem; 2015 Jan; 407(2):405-14. PubMed ID: 25366975 [TBL] [Abstract][Full Text] [Related]
7. Use of information dependent acquisition mass spectra and sequential window acquisition of all theoretical fragment-ion mass spectra for fruit juices metabolomics and authentication. Xu L; Xu Z; Strashnov I; Liao X Metabolomics; 2020 Jul; 16(7):81. PubMed ID: 32638130 [TBL] [Abstract][Full Text] [Related]
8. Analytical considerations for (un)-targeted metabolomic studies with special focus on forensic applications. Boxler MI; Schneider TD; Kraemer T; Steuer AE Drug Test Anal; 2019 May; 11(5):678-696. PubMed ID: 30408838 [TBL] [Abstract][Full Text] [Related]
9. Lipid-Pro: a computational lipid identification solution for untargeted lipidomics on data-independent acquisition tandem mass spectrometry platforms. Ahmed Z; Mayr M; Zeeshan S; Dandekar T; Mueller MJ; Fekete A Bioinformatics; 2015 Apr; 31(7):1150-3. PubMed ID: 25433698 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive MS/MS profiling by UHPLC-ESI-QTOF-MS/MS using SWATH data-independent acquisition for the study of platelet lipidomes in coronary artery disease. Schlotterbeck J; Chatterjee M; Gawaz M; Lämmerhofer M Anal Chim Acta; 2019 Jan; 1046():1-15. PubMed ID: 30482286 [TBL] [Abstract][Full Text] [Related]
11. A Novel Approach of SWATH-Based Metabolomics Analysis Using the Human Metabolome Database Spectral Library. Shikshaky H; Ahmed EA; Anwar AM; Osama A; Ezzeldin S; Nasr A; Mahgoub S; Magdeldin S Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142821 [TBL] [Abstract][Full Text] [Related]
12. Lipidomic profiling of non-mineralized dental plaque and biofilm by untargeted UHPLC-QTOF-MS/MS and SWATH acquisition. Drotleff B; Roth SR; Henkel K; Calderón C; Schlotterbeck J; Neukamm MA; Lämmerhofer M Anal Bioanal Chem; 2020 Apr; 412(10):2303-2314. PubMed ID: 31942654 [TBL] [Abstract][Full Text] [Related]
13. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Wang R; Yin Y; Zhu ZJ Anal Bioanal Chem; 2019 Jul; 411(19):4349-4357. PubMed ID: 30847570 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics. Rudt E; Feldhaus M; Margraf CG; Schlehuber S; Schubert A; Heuckeroth S; Karst U; Jeck V; Meyer SW; Korf A; Hayen H Anal Chem; 2023 Jun; 95(25):9488-9496. PubMed ID: 37307407 [TBL] [Abstract][Full Text] [Related]
15. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Heiles S Anal Bioanal Chem; 2021 Oct; 413(24):5927-5948. PubMed ID: 34142202 [TBL] [Abstract][Full Text] [Related]
16. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. Harrieder EM; Kretschmer F; Böcker S; Witting M J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Jan; 1188():123069. PubMed ID: 34879285 [TBL] [Abstract][Full Text] [Related]
17. Data-Independent Acquisition for the Quantification and Identification of Metabolites in Plasma. van der Laan T; Boom I; Maliepaard J; Dubbelman AC; Harms AC; Hankemeier T Metabolites; 2020 Dec; 10(12):. PubMed ID: 33353236 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive lipidomics of mouse plasma using class-specific surrogate calibrants and SWATH acquisition for large-scale lipid quantification in untargeted analysis. Drotleff B; Illison J; Schlotterbeck J; Lukowski R; Lämmerhofer M Anal Chim Acta; 2019 Dec; 1086():90-102. PubMed ID: 31561798 [TBL] [Abstract][Full Text] [Related]
19. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry. Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803 [TBL] [Abstract][Full Text] [Related]
20. Overview of Tandem Mass Spectral and Metabolite Databases for Metabolite Identification in Metabolomics. Yi Z; Zhu ZJ Methods Mol Biol; 2020; 2104():139-148. PubMed ID: 31953816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]