These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3250463)

  • 1. Hydrogen peroxide production in dopamine neurons.
    Spina MB; Cohen G
    Basic Life Sci; 1988; 49():1011-4. PubMed ID: 3250463
    [No Abstract]   [Full Text] [Related]  

  • 2. Monoamine oxidase and oxidative stress at dopaminergic synapses.
    Cohen G
    J Neural Transm Suppl; 1990; 32():229-38. PubMed ID: 2128499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exposure of striatal [corrected] synaptosomes to L-dopa increases levels of oxidized glutathione.
    Spina MB; Cohen G
    J Pharmacol Exp Ther; 1988 Nov; 247(2):502-7. PubMed ID: 3183949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates.
    Maker HS; Weiss C; Silides DJ; Cohen G
    J Neurochem; 1981 Feb; 36(2):589-93. PubMed ID: 7463078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [3H]Dopamine release by d-amphetamine from striatal synaptosomes of reserpinized rats.
    Masuoka DT; Alcaraz AF; Schott HF
    Biochem Pharmacol; 1982 Jun; 31(11):1969-74. PubMed ID: 7115417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine agonists stimulate protein carboxylmethylation in striatal synaptosomes.
    Billingsley ML; Roth RH
    J Pharmacol Exp Ther; 1982 Dec; 223(3):681-8. PubMed ID: 6183421
    [No Abstract]   [Full Text] [Related]  

  • 7. Endogenous dopamine enhances the neurotoxicity of 3-nitropropionic acid in the striatum through the increase of mitochondrial respiratory inhibition and free radicals production.
    Villarán RF; Tomás-Camardiel M; de Pablos RM; Santiago M; Herrera AJ; Navarro A; Machado A; Cano J
    Neurotoxicology; 2008 Mar; 29(2):244-58. PubMed ID: 18093658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase of dopamine synthesis in synaptosomes from rats treated with neuroleptics or reserpine.
    Tissari AH
    Med Biol; 1982 Feb; 60(1):38-41. PubMed ID: 6121960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guinea pig striatum as a model of human dopamine deamination: the role of monoamine oxidase isozyme ratio, localization, and affinity for substrate in synaptic dopamine metabolism.
    Azzaro AJ; King J; Kotzuk J; Schoepp DD; Frost J; Schochet S
    J Neurochem; 1985 Sep; 45(3):949-56. PubMed ID: 3928811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carrier-mediated efflux of [3H]dopamine and [3H]1-methyl-4-phenylpyridine: effect of ascorbic acid.
    Debler EA; Sershen H; Hashim A; Lajtha A; Reith ME
    Synapse; 1991 Feb; 7(2):99-105. PubMed ID: 2011830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional significance of the pentose phosphate pathway in synaptosomes: protection against peroxidative damage by catecholamines and oxidants.
    Hothersall JS; Greenbaum AL; McLean P
    J Neurochem; 1982 Nov; 39(5):1325-32. PubMed ID: 7119799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-DOPA and carbidopa chronically.
    Perry TL; Yong VW; Ito M; Foulks JG; Wall RA; Godin DV; Clavier RM
    J Neurochem; 1984 Oct; 43(4):990-3. PubMed ID: 6147392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoamine oxidase-catalyzed metabolism of 3,4-dihydroxyphenylethylamine in the dopaminergic synaptosomes from rat corpus striatum.
    Katz IR
    J Neurochem; 1982 Mar; 38(3):859-62. PubMed ID: 7057199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and functional differences between dopamine formed from endogenous tyrosine and exogenous L-dopa in nigrostriatal dopaminergic neurons.
    Melamed E
    Neurochem Int; 1992 Mar; 20 Suppl():115S-117S. PubMed ID: 1365408
    [No Abstract]   [Full Text] [Related]  

  • 15. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow.
    Cohen G; Farooqui R; Kesler N
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4890-4. PubMed ID: 9144160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine turnover and glutathione oxidation: implications for Parkinson disease.
    Spina MB; Cohen G
    Proc Natl Acad Sci U S A; 1989 Feb; 86(4):1398-400. PubMed ID: 2919185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson's disease.
    Nakao N; Shintani-Mizushima A; Kakishita K; Itakura T
    Exp Neurol; 2004 Jul; 188(1):65-73. PubMed ID: 15191803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The autoreceptor control of dopamine synthesis. An in vitro and in vivo comparison of dopamine agonists.
    Haubrich DR; Pflueger AB
    Mol Pharmacol; 1982 Jan; 21(1):114-20. PubMed ID: 6127616
    [No Abstract]   [Full Text] [Related]  

  • 19. Dopaminergic system activity and cellular defense mechanisms in the striatum and striatal synaptosomes of the rat subchronically exposed to manganese.
    Desole MS; Miele M; Esposito G; Migheli R; Fresu L; De Natale G; Miele E
    Arch Toxicol; 1994; 68(9):566-70. PubMed ID: 7998823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of dopamine synthesis inhibition by dopamine autoreceptor activation in striatal synaptosomes with in vivo reserpine administration.
    Tissari AH; Lillgäls MS
    J Neurochem; 1993 Jul; 61(1):231-8. PubMed ID: 8099951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.