These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32504689)

  • 41. Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability.
    Foroughi AH; Razavi MJ
    Acta Biomater; 2022 Jul; 146():317-340. PubMed ID: 35533924
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatigue behavior of porous biomaterials manufactured using selective laser melting.
    Yavari SA; Wauthle R; van der Stok J; Riemslag AC; Janssen M; Mulier M; Kruth JP; Schrooten J; Weinans H; Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4849-58. PubMed ID: 24094196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process.
    Fousová M; Vojtěch D; Kubásek J; Jablonská E; Fojt J
    J Mech Behav Biomed Mater; 2017 May; 69():368-376. PubMed ID: 28167428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process.
    Lin CY; Wirtz T; LaMarca F; Hollister SJ
    J Biomed Mater Res A; 2007 Nov; 83(2):272-9. PubMed ID: 17415762
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting.
    Stamp R; Fox P; O'Neill W; Jones E; Sutcliffe C
    J Mater Sci Mater Med; 2009 Sep; 20(9):1839-48. PubMed ID: 19536640
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inner strut morphology is the key parameter in producing highly porous and mechanically stable poly(ε-caprolactone) scaffolds via selective laser sintering.
    Tortorici M; Gayer C; Torchio A; Cho S; Schleifenbaum JH; Petersen A
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111986. PubMed ID: 33812614
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Strength enhancement and modulus modulation in auxetic meta-biomaterials produced by selective laser melting.
    Chen D; Li D; Pan K; Gao S; Wang B; Sun M; Zhao C; Liu X; Li N
    Acta Biomater; 2022 Nov; 153():596-613. PubMed ID: 36162764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Additively manufactured functionally graded biodegradable porous zinc.
    Li Y; Pavanram P; Zhou J; Lietaert K; Bobbert FSL; Kubo Y; Leeflang MA; Jahr H; Zadpoor AA
    Biomater Sci; 2020 May; 8(9):2404-2419. PubMed ID: 31993592
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.
    Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D
    Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure.
    Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y
    J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.
    Lipinski P; Barbas A; Bonnet AS
    J Mech Behav Biomed Mater; 2013 Dec; 28():274-90. PubMed ID: 24008139
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Additively manufactured biodegradable porous zinc.
    Li Y; Pavanram P; Zhou J; Lietaert K; Taheri P; Li W; San H; Leeflang MA; Mol JMC; Jahr H; Zadpoor AA
    Acta Biomater; 2020 Jan; 101():609-623. PubMed ID: 31672587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selective Laser Melting of Ti6Al4V sub-millimetric cellular structures: Prediction of dimensional deviations and mechanical performance.
    Bartolomeu F; Costa MM; Alves N; Miranda G; Silva FS
    J Mech Behav Biomed Mater; 2021 Jan; 113():104123. PubMed ID: 33032011
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Surface Curvature on the Mechanical and Mass-Transport Properties of Additively Manufactured Tissue Scaffolds with Minimal Surfaces.
    Li Z; Chen Z; Chen X; Zhao R
    ACS Biomater Sci Eng; 2022 Apr; 8(4):1623-1643. PubMed ID: 35285609
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of the mechanical compatibility of additively manufactured porous Ti-25Ta alloy for load-bearing implant applications.
    Soro N; Attar H; Brodie E; Veidt M; Molotnikov A; Dargusch MS
    J Mech Behav Biomed Mater; 2019 Sep; 97():149-158. PubMed ID: 31121433
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Post Processing and Biological Evaluation of the Titanium Scaffolds for Bone Tissue Engineering.
    Wysocki B; Idaszek J; Szlązak K; Strzelczyk K; Brynk T; Kurzydłowski KJ; Święszkowski W
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773323
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.
    Ahmadi SM; Campoli G; Amin Yavari S; Sajadi B; Wauthle R; Schrooten J; Weinans H; Zadpoor AA
    J Mech Behav Biomed Mater; 2014 Jun; 34():106-15. PubMed ID: 24566381
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical performance of additively manufactured meta-biomaterials.
    Zadpoor AA
    Acta Biomater; 2019 Feb; 85():41-59. PubMed ID: 30590181
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.
    Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ
    Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.