These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 32504892)
1. Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field. Tang L; Hamid Y; Zehra A; Sahito ZA; He Z; Beri WT; Khan MB; Yang X Environ Pollut; 2020 Oct; 265(Pt A):114861. PubMed ID: 32504892 [TBL] [Abstract][Full Text] [Related]
2. Characterization of fava bean (Vicia faba L.) genotypes for phytoremediation of cadmium and lead co-contaminated soils coupled with agro-production. Tang L; Hamid Y; Zehra A; Sahito ZA; He Z; Hussain B; Gurajala HK; Yang X Ecotoxicol Environ Saf; 2019 Apr; 171():190-198. PubMed ID: 30605848 [TBL] [Abstract][Full Text] [Related]
3. Positive effects of applying endophytic bacteria in eggplant-Sedum intercropping system on Cd phytoremediation and vegetable production in cadmium polluted greenhouse. Ma L; Huang L; Liu Q; Xu S; Wen Z; Qin S; Li T; Feng Y J Environ Sci (China); 2022 May; 115():383-391. PubMed ID: 34969466 [TBL] [Abstract][Full Text] [Related]
4. The endophytic bacterium relieved healthy risk of pakchoi intercropped with hyperaccumulator in the cadmium polluted greenhouse vegetable field. Ma L; Wu Y; Wang Q; Feng Y Environ Pollut; 2020 Sep; 264():114796. PubMed ID: 32428820 [TBL] [Abstract][Full Text] [Related]
5. The Cd phytoextraction potential of hyperaccumulator Sedum alfredii-oilseed rape intercropping system under different soil types and comprehensive benefits evaluation under field conditions. Cao X; Wang X; Lu M; Hamid Y; Lin Q; Liu X; Li T; Liu G; He Z; Yang X Environ Pollut; 2021 Sep; 285():117504. PubMed ID: 34380216 [TBL] [Abstract][Full Text] [Related]
6. Intraspecific variation in tomato: Impact on production quality and cadmium phytoremediation efficiency in intercropping systems with hyperaccumulating plant. Ma L; Liu Y; Sahito ZA; Liu C; Li Z; Yu C; Feng Y; Guo W Ecotoxicol Environ Saf; 2024 Sep; 282():116715. PubMed ID: 39002378 [TBL] [Abstract][Full Text] [Related]
7. Intercropping of Pinellia ternata (herbal plant) with Sedum alfredii (Cd-hyperaccumulator) to reduce soil cadmium (Cd) absorption and improve yield. Ng CWW; So PS; Wong JTF; Lau SY Environ Pollut; 2023 Feb; 318():120930. PubMed ID: 36565916 [TBL] [Abstract][Full Text] [Related]
8. Intercropping Sedum alfredii Hance and Cicer arietinum L. does not present a suitable land use pattern for multi-metal-polluted soil. He H; Jia Y; Li R; Yang P; Cao M; Luo J Environ Sci Pollut Res Int; 2023 Aug; 30(38):89616-89626. PubMed ID: 37454382 [TBL] [Abstract][Full Text] [Related]
9. Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system. Tang L; Hamid Y; Zehra A; Shohag MJI; He Z; Yang X Sci Total Environ; 2020 Dec; 748():142481. PubMed ID: 33113675 [TBL] [Abstract][Full Text] [Related]
10. Facilitation of Morus alba L. intercropped with Sedum alfredii H. and Arundo donax L. on soil contaminated with potentially toxic metals. Zeng P; Guo Z; Xiao X; Peng C; Liao B; Zhou H; Gu J Chemosphere; 2022 Mar; 290():133107. PubMed ID: 34848227 [TBL] [Abstract][Full Text] [Related]
11. Manganese-modified biochar promotes Cd accumulation in Sedum alfredii in an intercropping system. Chen X; Lin Q; Xiao H; Muhammad R Environ Pollut; 2023 Jan; 317():120525. PubMed ID: 36368551 [TBL] [Abstract][Full Text] [Related]
12. Phytoremediation of Cd-contaminated farmland soil via various Sedum alfredii-oilseed rape cropping systems: Efficiency comparison and cost-benefit analysis. Zhang J; Cao X; Yao Z; Lin Q; Yan B; Cui X; He Z; Yang X; Wang CH; Chen G J Hazard Mater; 2021 Oct; 419():126489. PubMed ID: 34216961 [TBL] [Abstract][Full Text] [Related]
13. Field crops (Ipomoea aquatica Forsk. and Brassica chinensis L.) for phytoremediation of cadmium and nitrate co-contaminated soils via rotation with Sedum alfredii Hance. Tang L; Luo W; Chen W; He Z; Gurajala HK; Hamid Y; Deng M; Yang X Environ Sci Pollut Res Int; 2017 Aug; 24(23):19293-19305. PubMed ID: 28669090 [TBL] [Abstract][Full Text] [Related]
14. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Cao X; Luo J; Wang X; Chen Z; Liu G; Khan MB; Kang KJ; Feng Y; He Z; Yang X Sci Total Environ; 2020 Jun; 723():138152. PubMed ID: 32224408 [TBL] [Abstract][Full Text] [Related]
15. Effects of tomato-Sedum alfredii Hance intercropping on crop production and Cd remediation as affected by soil types. Liu Y; Huang L; Liu Q; Li Z; Liu C; Yuan J; Liao J; Luo L; Yu C; Feng Y Environ Sci Pollut Res Int; 2024 Jan; 31(3):3696-3706. PubMed ID: 38091222 [TBL] [Abstract][Full Text] [Related]
16. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
17. The effects and health risk assessment of cauliflower co-cropping with Sedum alfredii in cadmium contaminated vegetable field. Ma L; Liu Y; Wu Y; Wang Q; Sahito ZA; Zhou Q; Huang L; Li T; Feng Y Environ Pollut; 2021 Jan; 268(Pt B):115869. PubMed ID: 33128930 [TBL] [Abstract][Full Text] [Related]
18. Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils. Chen Z; Liu Q; Chen S; Zhang S; Wang M; Mujtaba Munir MA; Feng Y; He Z; Yang X Environ Pollut; 2022 Jan; 293():118510. PubMed ID: 34793909 [TBL] [Abstract][Full Text] [Related]
19. Ochrobactrum intermedium and saponin assisted phytoremediation of Cd and B[a]P co-contaminated soil by Cd-hyperaccumulator Sedum alfredii. Tao Q; Li J; Liu Y; Luo J; Xu Q; Li B; Li Q; Li T; Wang C Chemosphere; 2020 Apr; 245():125547. PubMed ID: 31864950 [TBL] [Abstract][Full Text] [Related]
20. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]