These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 32504892)
21. Foliar application of plant growth regulators for enhancing heavy metal phytoextraction efficiency by Sedum alfredii Hance in contaminated soils: Lab to field experiments. Chen Z; Liu Q; Zhang S; Hamid Y; Lian J; Huang X; Zou T; Lin Q; Feng Y; He Z; Yang X Sci Total Environ; 2024 Feb; 913():169788. PubMed ID: 38181951 [TBL] [Abstract][Full Text] [Related]
22. Co-application of indole-3-acetic acid/gibberellin and oxalic acid for phytoextraction of cadmium and lead with Sedum alfredii Hance from contaminated soil. Liang Y; Xiao X; Guo Z; Peng C; Zeng P; Wang X Chemosphere; 2021 Dec; 285():131420. PubMed ID: 34256202 [TBL] [Abstract][Full Text] [Related]
23. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc. Zou J; Song F; Lu Y; Zhuge Y; Niu Y; Lou Y; Pan H; Zhang P; Pang L Chemosphere; 2021 Aug; 276():130223. PubMed ID: 34088099 [TBL] [Abstract][Full Text] [Related]
24. A Cd/Zn Co-hyperaccumulator and Pb accumulator, Sedum alfredii, is of high Cu tolerance. Xv L; Ge J; Tian S; Wang H; Yu H; Zhao J; Lu L Environ Pollut; 2020 Aug; 263(Pt B):114401. PubMed ID: 32234645 [TBL] [Abstract][Full Text] [Related]
25. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge. Luo K; Ma T; Liu H; Wu L; Ren J; Nai F; Li R; Chen L; Luo Y; Christie P Int J Phytoremediation; 2015; 17(1-6):575-82. PubMed ID: 25747245 [TBL] [Abstract][Full Text] [Related]
26. Cadmium level and soil type played a selective role in the endophytic bacterial community of hyperaccumulator Sedum alfredii Hance. Qiong W; Fengshan P; Xiaomeng X; Rafiq MT; Xiao'e Y; Bao C; Ying F Chemosphere; 2021 Jan; 263():127986. PubMed ID: 33297030 [TBL] [Abstract][Full Text] [Related]
27. Effects of CO Tang L; Hamid Y; Gurajala HK; He Z; Yang X Environ Sci Pollut Res Int; 2019 Jan; 26(2):1809-1820. PubMed ID: 30456615 [TBL] [Abstract][Full Text] [Related]
28. Effects of CO Tang L; Hamid Y; Sahito ZA; Gurajala HK; He Z; Yang X J Environ Manage; 2019 Jun; 239():287-298. PubMed ID: 30913479 [TBL] [Abstract][Full Text] [Related]
29. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. Deng L; Li Z; Wang J; Liu H; Li N; Wu L; Hu P; Luo Y; Christie P Int J Phytoremediation; 2016; 18(2):134-40. PubMed ID: 26445166 [TBL] [Abstract][Full Text] [Related]
30. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Wang Q; Ma L; Zhou Q; Chen B; Zhang X; Wu Y; Pan F; Huang L; Yang X; Feng Y Chemosphere; 2019 Nov; 234():769-776. PubMed ID: 31238273 [TBL] [Abstract][Full Text] [Related]
31. GLDA and EDTA assisted phytoremediation potential of Guan H; Dong L; Zhang Y; Bai S; Yan L Int J Phytoremediation; 2022; 24(13):1395-1404. PubMed ID: 35166632 [TBL] [Abstract][Full Text] [Related]
32. Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance. Guo J; Lv X; Jia H; Hua L; Ren X; Muhammad H; Wei T; Ding Y J Environ Sci (China); 2020 Feb; 88():361-369. PubMed ID: 31862077 [TBL] [Abstract][Full Text] [Related]
33. Implication of exogenous abscisic acid (ABA) application on phytoremediation: plants grown in co-contaminated soil. Cheng L; Pu L; Li A; Zhu X; Zhao P; Xu X; Lei N; Chen J Environ Sci Pollut Res Int; 2022 Feb; 29(6):8684-8693. PubMed ID: 34491497 [TBL] [Abstract][Full Text] [Related]
34. Accumulation and Transfer of Cadmium Isotope ( Lu X; Tao T; Hu W; Huang B; Li Y; Zu Y; Zhan F Bull Environ Contam Toxicol; 2021 Dec; 107(6):1143-1148. PubMed ID: 33560452 [TBL] [Abstract][Full Text] [Related]
35. [Effects of Different Kinds of Organic Materials on Soil Heavy Metal Phytoremediation Efficiency by Sedum alfredii Hance]. Yao GH; Xu HZ; Zhu LG; Ma JW; Liu D; Ye ZQ Huan Jing Ke Xue; 2015 Nov; 36(11):4268-76. PubMed ID: 26911018 [TBL] [Abstract][Full Text] [Related]
36. [Strengthening the effect of Deng YQ; Cao XY; Tan CY; Sun LJ; Peng X; Bai J; Huang SP Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3111-3118. PubMed ID: 33345513 [TBL] [Abstract][Full Text] [Related]
37. Rhodococcus qingshengii facilitates the phytoextraction of Zn, Cd, Ni, and Pb from soils by Sedum alfredii Hance. Du S; Lu Q; Liu L; Wang Y; Li J J Hazard Mater; 2022 Feb; 424(Pt C):127638. PubMed ID: 34801314 [TBL] [Abstract][Full Text] [Related]
38. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. Yang X; Qin J; Li J; Lai Z; Li H J Hazard Mater; 2021 Mar; 406():124325. PubMed ID: 33153785 [TBL] [Abstract][Full Text] [Related]
39. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape. Chen B; Ma X; Liu G; Xu X; Pan F; Zhang J; Tian S; Feng Y; Yang X Environ Sci Pollut Res Int; 2015 Nov; 22(22):17625-35. PubMed ID: 26146371 [TBL] [Abstract][Full Text] [Related]
40. Effects of magnetically treated Sedum alfredii seeds on the dissolved organic matter characteristics of Cd-contaminated soil during phytoextraction. Tang Y; Ji S; Chen D; Wang J; Cao M; Luo J Environ Sci Pollut Res Int; 2022 Mar; 29(14):20808-20816. PubMed ID: 34743305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]