These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32505060)
1. Photosynthesis in a Vanda sp orchid with Photosynthetic Roots. Sma-Air S; Ritchie RJ J Plant Physiol; 2020 Aug; 251():153187. PubMed ID: 32505060 [TBL] [Abstract][Full Text] [Related]
2. Photosynthetic electron transport in an anoxygenic photosynthetic bacterium Afifella (Rhodopseudomonas) marina measured using PAM fluorometry. Ritchie RJ; Runcie JW Photochem Photobiol; 2013; 89(2):370-83. PubMed ID: 22978665 [TBL] [Abstract][Full Text] [Related]
3. Measurement of photosynthesis using PAM technology in a purple sulfur bacterium Thermochromatium tepidum (Chromatiaceae). Ritchie RJ; Mekjinda N Photochem Photobiol; 2015; 91(2):350-8. PubMed ID: 25932491 [TBL] [Abstract][Full Text] [Related]
4. Photosynthetic electron transport in pitcher plants (Nepenthes mirabilis). Ritchie RJ; Sma-Air S; Kongkawn C; Sawattawee J Photosynth Res; 2023 Feb; 155(2):147-158. PubMed ID: 36414834 [TBL] [Abstract][Full Text] [Related]
5. The use of solar radiation by the photosynthetic bacterium, Rhodopseudomonas palustris: model simulation of conditions found in a shallow pond or a flatbed reactor. Ritchie RJ Photochem Photobiol; 2013; 89(5):1143-62. PubMed ID: 23808360 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic electron transport rate (ETR) in the littoral herb Launaea sarmentosa known as mole crab in Thailand. Ritchie RJ; Sma-Air S; Limsathapornkul N; Pranama N; Nakkeaw M; Kaewnam P; Thongchumnum P; Kanjanachatree K Photosynth Res; 2021 Dec; 150(1-3):327-341. PubMed ID: 33635512 [TBL] [Abstract][Full Text] [Related]
7. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea. Snir A; Gurevitz M; Marcus Y Photosynth Res; 2006 Dec; 90(3):233-42. PubMed ID: 17286188 [TBL] [Abstract][Full Text] [Related]
8. Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina. Gloag RS; Ritchie RJ; Chen M; Larkum AW; Quinnell RG Biochim Biophys Acta; 2007 Feb; 1767(2):127-35. PubMed ID: 17223068 [TBL] [Abstract][Full Text] [Related]
9. An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Longstaff BJ; Kildea T; Runcie JW; Cheshire A; Dennison WC; Hurd C; Kana T; Raven JA; Larkum AW Photosynth Res; 2002; 74(3):281-93. PubMed ID: 16245139 [TBL] [Abstract][Full Text] [Related]
10. [Photosynthetic characteristics and active ingredients differences of Asarum heterotropoides var. mandshuricum under different light irradiance]. Fang K; Ma HQ; Wang ZX; Sun CH; Zhang SN; Zhang YY; Tian YX; Wang ZQ Zhongguo Zhong Yao Za Zhi; 2019 Jul; 44(13):2753-2761. PubMed ID: 31359687 [TBL] [Abstract][Full Text] [Related]
11. Photosynthesis and photoinhibition in a tropical alpine giant rosette plant, Lobelia rhynchopetalum. Fetene M; Nauke P; Lüttge U; Beck E New Phytol; 1997 Nov; 137(3):453-461. PubMed ID: 33863076 [TBL] [Abstract][Full Text] [Related]
12. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors. Hindersin S; Leupold M; Kerner M; Hanelt D Bioprocess Biosyst Eng; 2013 Mar; 36(3):345-55. PubMed ID: 22847362 [TBL] [Abstract][Full Text] [Related]
13. THE SHORT-TERM EFFECT OF IRRADIANCE ON THE PHOTOSYNTHETIC PROPERTIES OF ANTARCTIC FAST-ICE MICROALGAL COMMUNITIES(1). Ryan KG; Cowie RO; Liggins E; McNaughtan D; Martin A; Davy SK J Phycol; 2009 Dec; 45(6):1290-8. PubMed ID: 27032585 [TBL] [Abstract][Full Text] [Related]
14. [Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng.]. Xu XZ; Zhang JY; Zhang GH; Long GQ; Yang SC; Chen ZJ; Wei FG; Chen JW Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):193-204. PubMed ID: 29692028 [TBL] [Abstract][Full Text] [Related]
15. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Figueroa FL; Conde-Alvarez R; Gómez I Photosynth Res; 2003; 75(3):259-75. PubMed ID: 16228606 [TBL] [Abstract][Full Text] [Related]
16. Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis. Li Q; Deng M; Xiong Y; Coombes A; Zhao W ScientificWorldJournal; 2014; 2014():347461. PubMed ID: 25093201 [TBL] [Abstract][Full Text] [Related]
17. Leaves of Japanese oak (Quercus mongolica var. crispula) mitigate photoinhibition by adjusting electron transport capacities and thermal energy dissipation along the intra-canopy light gradient. Kitao M; Kitaoka S; Komatsu M; Utsugi H; Tobita H; Koike T; Maruyama Y Physiol Plant; 2012 Oct; 146(2):192-204. PubMed ID: 22394101 [TBL] [Abstract][Full Text] [Related]
18. Morning reduction of photosynthetic capacity before midday depression. Koyama K; Takemoto S Sci Rep; 2014 Mar; 4():4389. PubMed ID: 24633128 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
20. Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. Mohotti AJ; Lawlor DW J Exp Bot; 2002 Feb; 53(367):313-22. PubMed ID: 11807135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]