These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32505157)

  • 1. Relativistic local hybrid functionals and their impact on 1s core orbital energies.
    Maier TM; Ikabata Y; Nakai H
    J Chem Phys; 2020 Jun; 152(21):214103. PubMed ID: 32505157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoring the iso-orbital limit of the kinetic energy density in relativistic density functional theory.
    Maier TM; Ikabata Y; Nakai H
    J Chem Phys; 2019 Nov; 151(17):174114. PubMed ID: 31703499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.
    Amin EA; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic correction scheme for core-level binding energies from GW.
    Keller L; Blum V; Rinke P; Golze D
    J Chem Phys; 2020 Sep; 153(11):114110. PubMed ID: 32962377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a correct treatment of core properties with local hybrid functionals.
    Haasler M; Maier TM; Kaupp M
    J Comput Chem; 2023 Dec; 44(32):2461-2477. PubMed ID: 37635647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-excitation energy calculations with a long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP).
    Song JW; Watson MA; Nakata A; Hirao K
    J Chem Phys; 2008 Nov; 129(18):184113. PubMed ID: 19045392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relativistic Orbital-Optimized Density Functional Theory for Accurate Core-Level Spectroscopy.
    Cunha LA; Hait D; Kang R; Mao Y; Head-Gordon M
    J Phys Chem Lett; 2022 Apr; 13(15):3438-3449. PubMed ID: 35412838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-Level Excitation Energies of Nucleic Acid Bases Expressed as Orbital Energies of the Kohn-Sham Density Functional Theory with Long-Range Corrected Functionals.
    Hirao K; Nakajima T; Chan B; Song JW; Bae HS
    J Phys Chem A; 2020 Dec; 124(50):10482-10494. PubMed ID: 33275438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory for comprehensive orbital energy calculations.
    Nakata A; Tsuneda T
    J Chem Phys; 2013 Aug; 139(6):064102. PubMed ID: 23947838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the accuracy of frozen density embedding calculations with hybrid and orbital-dependent functionals for non-bonded interaction energies.
    Laricchia S; Fabiano E; Della Sala F
    J Chem Phys; 2012 Jul; 137(1):014102. PubMed ID: 22779632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Accuracy of Local Hybrid Density Functional Approximations for Molecular Response Properties.
    Holzer C; Franzke YJ; Kehry M
    J Chem Theory Comput; 2021 May; 17(5):2928-2947. PubMed ID: 33914504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relativistic short-range exchange energy functionals beyond the local-density approximation.
    Paquier J; Giner E; Toulouse J
    J Chem Phys; 2020 Jun; 152(21):214106. PubMed ID: 32505167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-component relativistic Kohn-Sham theory.
    Saue T; Helgaker T
    J Comput Chem; 2002 Jun; 23(8):814-23. PubMed ID: 12012358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements.
    Sen S; Shee A; Mukherjee D
    J Chem Phys; 2018 Feb; 148(5):054107. PubMed ID: 29421893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of local hybrid functionals for TDDFT calculations of electronic excitation energies.
    Maier TM; Bahmann H; Arbuznikov AV; Kaupp M
    J Chem Phys; 2016 Feb; 144(7):074106. PubMed ID: 26896975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.
    Komorovsky S; Repisky M; Malkin E; Demissie TB; Ruud K
    J Chem Theory Comput; 2015 Aug; 11(8):3729-39. PubMed ID: 26574455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid functionals.
    Imamura Y; Otsuka T; Nakai H
    J Comput Chem; 2007 Sep; 28(12):2067-74. PubMed ID: 17436256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent density functional theory calculations for core-excited states: assessment of standard exchange-correlation functionals and development of a novel hybrid functional.
    Nakata A; Imamura Y; Otsuka T; Nakai H
    J Chem Phys; 2006 Mar; 124(9):94105. PubMed ID: 16526843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?
    Xu X; Zhang W; Tang M; Truhlar DG
    J Chem Theory Comput; 2015 May; 11(5):2036-52. PubMed ID: 26574408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.