These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32505160)

  • 1. Converged quantum simulations of reactive solutes in superfluid helium: The Bochum perspective.
    Brieuc F; Schran C; Uhl F; Forbert H; Marx D
    J Chem Phys; 2020 Jun; 152(21):210901. PubMed ID: 32505160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets.
    Boese AD; Forbert H; Masia M; Tekin A; Marx D; Jansen G
    Phys Chem Chem Phys; 2011 Aug; 13(32):14550-64. PubMed ID: 21687854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium.
    Schran C; Uhl F; Behler J; Marx D
    J Chem Phys; 2018 Mar; 148(10):102310. PubMed ID: 29544280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated path integral methods for atomistic simulations at ultra-low temperatures.
    Uhl F; Marx D; Ceriotti M
    J Chem Phys; 2016 Aug; 145(5):054101. PubMed ID: 27497533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction dynamics inside superfluid helium nanodroplets: the formation of the Ne
    Vilà A; González M
    Phys Chem Chem Phys; 2016 Nov; 18(46):31869-31880. PubMed ID: 27841391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converged Colored Noise Path Integral Molecular Dynamics Study of the Zundel Cation Down to Ultralow Temperatures at Coupled Cluster Accuracy.
    Schran C; Brieuc F; Marx D
    J Chem Theory Comput; 2018 Oct; 14(10):5068-5078. PubMed ID: 30217111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum interferences in the photodissociation of Cl2(B) in superfluid helium nanodroplets ((4)He)N.
    Vilà A; González M; Mayol R
    Phys Chem Chem Phys; 2015 Dec; 17(48):32241-50. PubMed ID: 26579975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvation of molecules in superfluid helium enhances the "interaction induced localization" effect.
    Walewski Ł; Forbert H; Marx D
    J Chem Phys; 2014 Apr; 140(14):144305. PubMed ID: 24735297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and properties of metal clusters isolated in helium droplets.
    Tiggesbäumker J; Stienkemeier F
    Phys Chem Chem Phys; 2007 Sep; 9(34):4748-70. PubMed ID: 17712454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic molecular superfluid response: theory and simulations.
    Zeng T; Roy PN
    Rep Prog Phys; 2014 Apr; 77(4):046601. PubMed ID: 24647079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of vortex assisted metal condensation in superfluid helium.
    Popov E; Mammetkuliyev M; Eloranta J
    J Chem Phys; 2013 May; 138(20):204307. PubMed ID: 23742475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum features of a barely bound molecular dopant: Cs2(3Σu) in bosonic helium droplets of variable size.
    Pérez de Tudela R; López-Durán D; González-Lezana T; Delgado-Barrio G; Villarreal P; Gianturco FA; Yurtsever E
    J Phys Chem A; 2011 Jun; 115(25):6892-902. PubMed ID: 21585200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing accurate interaction potentials to describe the microsolvation of protonated methane by helium atoms.
    Kuchenbecker D; Uhl F; Forbert H; Jansen G; Marx D
    Phys Chem Chem Phys; 2017 Mar; 19(12):8307-8321. PubMed ID: 28280806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes.
    Toennies JP; Vilesov AF
    Angew Chem Int Ed Engl; 2004 May; 43(20):2622-48. PubMed ID: 18629978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of 3He impurities on the superfluid response of the 4He monolayer on a C20 molecule.
    Shin H; Kwon Y
    J Chem Phys; 2013 Feb; 138(6):064307. PubMed ID: 23425471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational excitations of N2O in small helium clusters and the role of Bose permutation symmetry.
    Paesani F; Whaley KB
    J Chem Phys; 2004 Sep; 121(11):5293-311. PubMed ID: 15352823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsolvation of molecules in superfluid helium nanodroplets revealed by means of electronic spectroscopy.
    Premke T; Wirths EM; Pentlehner D; Riechers R; Lehnig R; Vdovin A; Slenczka A
    Front Chem; 2014; 2():51. PubMed ID: 25077143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational fluctuation of molecules in quantum clusters. I. Path integral hybrid Monte Carlo algorithm.
    Miura S
    J Chem Phys; 2007 Mar; 126(11):114308. PubMed ID: 17381207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dynamics of the pick up process of atoms by superfluid helium nanodroplets: the Ne + ((4)He)1000 system.
    Vilà A; González M; Mayol R
    Phys Chem Chem Phys; 2016 Jan; 18(3):2006-14. PubMed ID: 26688071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.