These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3250533)

  • 1. Reduction of nitroheterocyclic drugs by ascorbate and catecholamines: a possible mechanism for the neurotoxicity of nitroheterocyclic drugs.
    Rao DN; Mason RP
    Basic Life Sci; 1988; 49():787-94. PubMed ID: 3250533
    [No Abstract]   [Full Text] [Related]  

  • 2. Generation of radical anions of nitrofurantoin, misonidazole, and metronidazole by ascorbate.
    Rao DN; Harman L; Motten A; Schreiber J; Mason RP
    Arch Biochem Biophys; 1987 Jun; 255(2):419-27. PubMed ID: 3036006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of nitro radical anions of some 5-nitrofurans, 2- and 5-nitroimidazoles by norepinephrine, dopamine, and serotonin. A possible mechanism for neurotoxicity caused by nitroheterocyclic drugs.
    Rao DN; Mason RP
    J Biol Chem; 1987 Aug; 262(24):11731-6. PubMed ID: 2887562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation of ascorbate by electron affinic drugs and carcinogens.
    Biaglow JE; Jacobson B; Varnes M
    Photochem Photobiol; 1978; 28(4-5):869-76. PubMed ID: 216036
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of the superoxide free radical ion in photosynthetic ascorbate oxidation and ascorbate-mediated photophosphorylation.
    Elstner EF; Kramer R
    Biochim Biophys Acta; 1973 Sep; 314(3):340-53. PubMed ID: 4751235
    [No Abstract]   [Full Text] [Related]  

  • 6. Reduction of nitroheterocyclic compounds by mammalian tissues in vivo.
    Yeung TC; Sudlow G; Koch RL; Goldman P
    Biochem Pharmacol; 1983 Jul; 32(14):2249-53. PubMed ID: 6870947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship of oxygen uptake to electron transport in photosystem I of isolated chloroplasts: the role of superoxide and ascorbate.
    Allen JF; Hall DO
    Biochem Biophys Res Commun; 1974 Jun; 58(3):579-85. PubMed ID: 4836266
    [No Abstract]   [Full Text] [Related]  

  • 8. The kinetics of the aerobic reduction of nitrofurantoin by NADPH-cytochrome P-450 Ic) reductase.
    Holtzman JL; Crankshaw DL; Peterson FJ; Polnaszek CF
    Mol Pharmacol; 1981 Nov; 20(3):669-73. PubMed ID: 6799776
    [No Abstract]   [Full Text] [Related]  

  • 9. The mechanism of the oxidation of ascorbate and MN2+ by chloroplasts. The role of the radical superoxide.
    Epel BL; Neumann J
    Biochim Biophys Acta; 1973 Dec; 325(3):520-9. PubMed ID: 4149767
    [No Abstract]   [Full Text] [Related]  

  • 10. Reductive and oxidative metabolism of nitrofurantoin in rat liver.
    Jonen HG
    Naunyn Schmiedebergs Arch Pharmacol; 1980; 315(2):167-75. PubMed ID: 7207645
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of scavengers of active oxygen species on cell damage caused in CHO-K1 cells by phenylhydroquinone, an o-phenylphenol metabolite.
    Tayama S; Nakagawa Y
    Mutat Res; 1994 Jul; 324(3):121-31. PubMed ID: 7517511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen radicals and drugs: in vitro measurements.
    Ziegler DM; Kehrer JP
    Methods Enzymol; 1990; 186():621-6. PubMed ID: 2172719
    [No Abstract]   [Full Text] [Related]  

  • 13. Activation of misonidazole by rat liver microsomes and purified NADPH-cytochrome c reductase.
    McManus ME; Lang MA; Stuart K; Strong J
    Biochem Pharmacol; 1982 Feb; 31(4):547-52. PubMed ID: 6802140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of superoxide dismutase and catalase to protect catecholamines from oxidation in tissue culture studies.
    Mahan LC; Insel PA
    Anal Biochem; 1984 Jan; 136(1):208-16. PubMed ID: 6711809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-associated changes in antioxidants and antioxidative enzymes in rats.
    De AK; Darad R
    Mech Ageing Dev; 1991 Jun; 59(1-2):123-8. PubMed ID: 1890876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitroaryl-1,4-dihydropyridines as antioxidants against rat liver microsomes oxidation induced by iron/ascorbate, nitrofurantoin and naphthalene.
    Letelier ME; Entrala P; López-Alarcón C; González-Lira V; Molina-Berríos A; Cortés-Troncoso J; Jara-Sandoval J; Santander P; Núñez-Vergara L
    Toxicol In Vitro; 2007 Dec; 21(8):1610-8. PubMed ID: 17669617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activities of superoxide dismutase, catalase and ascorbic acid content in the liver of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium.
    Zikic RV; Stajn A; Saicic ZS; Spasic MB; Ziemnicki K; Petrovic VM
    Physiol Res; 1996; 45(6):479-81. PubMed ID: 9085381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper catalyzed oxidation of ascorbate (vitamin C). Inhibitory effect of catalase, superoxide dismutase, serum proteins (ceruloplasmin, albumin, apotransferrin) and amino acids.
    Løvstad RA
    Int J Biochem; 1987; 19(4):309-13. PubMed ID: 3595980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of DNA strand breakage by vitamin C and superoxide and the protective roles of catalase and superoxide dismutase.
    Morgan AR; Cone RL; Elgert TM
    Nucleic Acids Res; 1976 May; 3(5):1139-49. PubMed ID: 181730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of L-ascorbic acid by superoxide dismutase and catalase.
    Miyake N; Kim M; Kurata T
    Biosci Biotechnol Biochem; 1999 Jan; 63(1):54-7. PubMed ID: 10052121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.