BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32505449)

  • 1. Determination of Protein-Protein Interactions at High Co-Solvent Concentrations Using Static and Dynamic Light Scattering.
    Holloway L; Roche A; Marzouk S; Uddin S; Ke P; Ekizoglou S; Curtis R
    J Pharm Sci; 2020 Sep; 109(9):2699-2709. PubMed ID: 32505449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying Excipient Modulated Physical Stability and Viscosity of Monoclonal Antibody Formulations Using Small-Angle Scattering.
    Xu AY; Castellanos MM; Mattison K; Krueger S; Curtis JE
    Mol Pharm; 2019 Oct; 16(10):4319-4338. PubMed ID: 31487466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Relationship between Protein-Protein Interactions and Liquid-Liquid Phase Separation for Monoclonal Antibodies.
    Sibanda N; Shanmugam RK; Curtis R
    Mol Pharm; 2023 May; 20(5):2662-2674. PubMed ID: 37039349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-protein interactions and water activity coefficients can be used to aid a first excipient choice in protein formulations.
    Schleinitz M; Sadowski G; Brandenbusch C
    Int J Pharm; 2019 Oct; 569():118608. PubMed ID: 31415881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Glycosylation on Protein-Protein Self-Interactions of Monoclonal Antibodies.
    Palakollu V; Motabar L; Roberts CJ
    Mol Pharm; 2024 Mar; 21(3):1414-1423. PubMed ID: 38386020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions.
    Winzor DJ; Deszczynski M; Harding SE; Wills PR
    Biophys Chem; 2007 Jun; 128(1):46-55. PubMed ID: 17382457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of alcohols on aqueous lysozyme-lysozyme interactions from static light-scattering measurements.
    Liu W; Bratko D; Prausnitz JM; Blanch HW
    Biophys Chem; 2004 Feb; 107(3):289-98. PubMed ID: 14967244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of lysozyme in guanidinium chloride solutions from static and dynamic light-scattering measurements.
    Liu W; Cellmer T; Keerl D; Prausnitz JM; Blanch HW
    Biotechnol Bioeng; 2005 May; 90(4):482-90. PubMed ID: 15778988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Well Do Low- and High-Concentration Protein Interactions Predict Solution Viscosities of Monoclonal Antibodies?
    Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ
    J Pharm Sci; 2019 Jan; 108(1):142-154. PubMed ID: 30017887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.
    Herhut M; Brandenbusch C; Sadowski G
    Biotechnol J; 2016 Jan; 11(1):146-54. PubMed ID: 26250594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weak antibody-cyclodextrin interactions determined by quartz crystal microbalance and dynamic/static light scattering.
    Härtl E; Dixit N; Besheer A; Kalonia D; Winter G
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):781-9. PubMed ID: 23685354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interactions in dilute to concentrated solutions: α-chymotrypsinogen in acidic conditions.
    Blanco MA; Perevozchikova T; Martorana V; Manno M; Roberts CJ
    J Phys Chem B; 2014 Jun; 118(22):5817-31. PubMed ID: 24810917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From osmotic second virial coefficient (B22 ) to phase behavior of a monoclonal antibody.
    Rakel N; Bauer KC; Galm L; Hubbuch J
    Biotechnol Prog; 2015; 31(2):438-51. PubMed ID: 25683855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput self-interaction chromatography: applications in protein formulation prediction.
    Johnson DH; Parupudi A; Wilson WW; DeLucas LJ
    Pharm Res; 2009 Feb; 26(2):296-305. PubMed ID: 18923812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method qualification and application of diffusion interaction parameter and virial coefficient.
    Shi S; Uchida M; Cheung J; Antochshuk V; Shameem M
    Int J Biol Macromol; 2013 Nov; 62():487-93. PubMed ID: 24095715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Protein-Protein Interactions of Concentrated Antibody Solutions Using Dilute Solution Data and Coarse-Grained Molecular Models.
    Calero-Rubio C; Ghosh R; Saluja A; Roberts CJ
    J Pharm Sci; 2018 May; 107(5):1269-1281. PubMed ID: 29274822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental support for reclassification of the light scattering second virial coefficient from macromolecular solutions as a hydrodynamic parameter.
    Winzor DJ; Dinu V; Scott DJ; Harding SE
    Eur Biophys J; 2023 Jul; 52(4-5):343-352. PubMed ID: 37460663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-angle X-ray scattering and light scattering on lysozyme and sodium glycocholate micelles.
    Leggio C; Galantini L; Zaccarelli E; Pavel NV
    J Phys Chem B; 2005 Dec; 109(50):23857-69. PubMed ID: 16375371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic storage modulus as a novel parameter for analyzing protein-protein interactions in high protein concentration solutions: correlation with static and dynamic light scattering measurements.
    Saluja A; Badkar AV; Zeng DL; Nema S; Kalonia DS
    Biophys J; 2007 Jan; 92(1):234-44. PubMed ID: 17028129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.
    Ma Y; Acosta DM; Whitney JR; Podgornik R; Steinmetz NF; French RH; Parsegian VA
    J Biol Phys; 2015 Jan; 41(1):85-97. PubMed ID: 25403822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.