These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32505518)

  • 1. Investigation of airflow field in the upper airway under unsteady respiration pattern using large eddy simulation method.
    Cui X; Wu W; Ge H
    Respir Physiol Neurobiol; 2020 Aug; 279():103468. PubMed ID: 32505518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions.
    Cui X; Gutheil E
    Respir Physiol Neurobiol; 2018 Jun; 252-253():38-46. PubMed ID: 29518555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation.
    Cui X; Wu W; Gutheil E
    Respir Physiol Neurobiol; 2018 Jan; 248():1-9. PubMed ID: 29128524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway.
    Liu X; Yan W; Liu Y; Choy YS; Wei Y
    Comput Math Methods Med; 2016; 2016():3181654. PubMed ID: 27725841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration.
    Cui XG; Gutheil E
    J Biomech; 2011 Nov; 44(16):2768-74. PubMed ID: 21937045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES.
    Chen W; Wang L; Chen L; Ge H; Cui X
    Respir Physiol Neurobiol; 2022 Jan; 295():103784. PubMed ID: 34517114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing airflow unsteadiness in the human respiratory tract under different expiration conditions.
    Jing H; Ge H; Tang H; Farnoud A; Saidul Islam M; Wang L; Wang C; Cui X
    J Biomech; 2024 Jan; 162():111910. PubMed ID: 38154261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration.
    Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K
    Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying airflow structures in periodic cylindrical hills of human tracheal cartilaginous rings.
    Heidarinejad G; Roozbahani MH; Heidarinejad M
    Respir Physiol Neurobiol; 2019 Aug; 266():103-114. PubMed ID: 31028849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Numerical simulation on cycle change form of the pressure and wall shear in human upper respiratory tract].
    Li F; Xu X; Sun D; Zhao X; Tan S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):409-14. PubMed ID: 23858771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational simulations of airflow in an in vitro model of the pediatric upper airways.
    Allen GM; Shortall BP; Gemci T; Corcoran TE; Chigier NA
    J Biomech Eng; 2004 Oct; 126(5):604-13. PubMed ID: 15648813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.
    Mihaescu M; Murugappan S; Kalra M; Khosla S; Gutmark E
    J Biomech; 2008 Jul; 41(10):2279-88. PubMed ID: 18514205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsteady flow characteristics through a human nasal airway.
    Lee JH; Na Y; Kim SK; Chung SK
    Respir Physiol Neurobiol; 2010 Jul; 172(3):136-46. PubMed ID: 20471501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results.
    Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D phase contrast MRI in models of human airways: Validation of computational fluid dynamics simulations of steady inspiratory flow.
    Collier GJ; Kim M; Chung Y; Wild JM
    J Magn Reson Imaging; 2018 Nov; 48(5):1400-1409. PubMed ID: 29630757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow.
    Gunatilaka CC; Schuh A; Higano NS; Woods JC; Bates AJ
    Comput Biol Med; 2020 Dec; 127():104099. PubMed ID: 33152667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of the effects of bronchial structural abnormalities on respiratory flow distribution.
    Yu S; Wang J; Sun X; Liu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):164. PubMed ID: 28155703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow simulation in the human upper respiratory tract.
    Martonen TB; Quan L; Zhang Z; Musante CJ
    Cell Biochem Biophys; 2002; 37(1):27-36. PubMed ID: 12398415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging.
    Bates AJ; Schuh A; Amine-Eddine G; McConnell K; Loew W; Fleck RJ; Woods JC; Dumoulin CL; Amin RS
    Clin Biomech (Bristol, Avon); 2019 Jun; 66():88-96. PubMed ID: 29079097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.