These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32505826)

  • 1. Phantom bursting may underlie electrical bursting in single pancreatic β-cells.
    Fazli M; Vo T; Bertram R
    J Theor Biol; 2020 Sep; 501():110346. PubMed ID: 32505826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in beta-cells: considerations in favor of metabolically driven oscillations.
    Pedersen MG
    J Theor Biol; 2007 Sep; 248(2):391-400. PubMed ID: 17604056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitions between bursting modes in the integrated oscillator model for pancreatic β-cells.
    Marinelli I; Vo T; Gerardo-Giorda L; Bertram R
    J Theor Biol; 2018 Oct; 454():310-319. PubMed ID: 29935201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models.
    Zhang M; Goforth P; Bertram R; Sherman A; Satin L
    Biophys J; 2003 May; 84(5):2852-70. PubMed ID: 12719219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances.
    Kinard TA; de Vries G; Sherman A; Satin LS
    Biophys J; 1999 Mar; 76(3):1423-35. PubMed ID: 10049324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations.
    Ren J; Sherman A; Bertram R; Goforth PB; Nunemaker CS; Waters CD; Satin LS
    Am J Physiol Endocrinol Metab; 2013 Oct; 305(7):E805-17. PubMed ID: 23921138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A phantom bursting mechanism for episodic bursting.
    Bertram R; Rhoads J; Cimbora WP
    Bull Math Biol; 2008 Oct; 70(7):1979-93. PubMed ID: 18648884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three roads to islet bursting: emergent oscillations in coupled phantom bursters.
    Zimliki CL; Mears D; Sherman A
    Biophys J; 2004 Jul; 87(1):193-206. PubMed ID: 15240457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow oscillations persist in pancreatic beta cells lacking phosphofructokinase M.
    Marinelli I; Parekh V; Fletcher P; Thompson B; Ren J; Tang X; Saunders TL; Ha J; Sherman A; Bertram R; Satin LS
    Biophys J; 2022 Mar; 121(5):692-704. PubMed ID: 35131294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets.
    Bertram R; Satin L; Zhang M; Smolen P; Sherman A
    Biophys J; 2004 Nov; 87(5):3074-87. PubMed ID: 15347584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical bursting, calcium oscillations, and synchronization of pancreatic islets.
    Bertram R; Sherman A; Satin LS
    Adv Exp Med Biol; 2010; 654():261-79. PubMed ID: 20217502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose.
    Scarl RT; Corbin KL; Vann NW; Smith HM; Satin LS; Sherman A; Nunemaker CS
    Cell Calcium; 2019 Nov; 83():102081. PubMed ID: 31563790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A calcium-based phantom bursting model for pancreatic islets.
    Bertram R; Sherman A
    Bull Math Biol; 2004 Sep; 66(5):1313-44. PubMed ID: 15294427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phantom burster model for pancreatic beta-cells.
    Bertram R; Previte J; Sherman A; Kinard TA; Satin LS
    Biophys J; 2000 Dec; 79(6):2880-92. PubMed ID: 11106596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex bursting in pancreatic islets: a potential glycolytic mechanism.
    Wierschem K; Bertram R
    J Theor Biol; 2004 Jun; 228(4):513-21. PubMed ID: 15178199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling demonstrates how multiple slow processes can provide adjustable control of islet bursting.
    Watts M; Tabak J; Bertram R
    Islets; 2011; 3(6):320-6. PubMed ID: 21934356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets.
    McKenna JP; Dhumpa R; Mukhitov N; Roper MG; Bertram R
    PLoS Comput Biol; 2016 Oct; 12(10):e1005143. PubMed ID: 27788129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum.
    Beauvois MC; Merezak C; Jonas JC; Ravier MA; Henquin JC; Gilon P
    Am J Physiol Cell Physiol; 2006 Jun; 290(6):C1503-11. PubMed ID: 16381799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillations in K(ATP) conductance drive slow calcium oscillations in pancreatic β-cells.
    Marinelli I; Thompson BM; Parekh VS; Fletcher PA; Gerardo-Giorda L; Sherman AS; Satin LS; Bertram R
    Biophys J; 2022 Apr; 121(8):1449-1464. PubMed ID: 35300967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium Oscillation Frequency-Sensitive Gene Regulation and Homeostatic Compensation in Pancreatic β-Cells.
    Yildirim V; Bertram R
    Bull Math Biol; 2017 Jun; 79(6):1295-1324. PubMed ID: 28497293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.