These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32505944)

  • 21. Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst.
    Coker VS; Garrity A; Wennekes WB; Roesink HD; Cutting RS; Lloyd JR
    Environ Technol; 2014; 35(5-8):1046-54. PubMed ID: 24645489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III).
    K'Owino IO; Omole MA; Sadik OA
    J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.
    Qin YL; Liu YC; Liang F; Wang LM
    ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires.
    Ai Z; Cheng Y; Zhang L; Qiu J
    Environ Sci Technol; 2008 Sep; 42(18):6955-60. PubMed ID: 18853815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of Cr(VI) by "palladized" biomass of Desulfovibrio desulfuricans ATCC 29577.
    Mabbett AN; Yong P; Farr JP; Macaskie LE
    Biotechnol Bioeng; 2004 Jul; 87(1):104-9. PubMed ID: 15211494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reclamation of hexavalent chromium using catalytic activity of highly recyclable biogenic Pd(0) nanoparticles.
    Tripathi RM; Chung SJ
    Sci Rep; 2020 Jan; 10(1):640. PubMed ID: 31959919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced photocatalytic reduction of aqueous Pb(II) over Ag loaded TiO2 with formic acid as hole scavenger.
    Li L; Jiang F; Liu J; Wan H; Wan Y; Zheng S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(3):327-36. PubMed ID: 22320684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nb
    Du Y; Zhang S; Wang J; Wu J; Dai H
    J Environ Sci (China); 2018 Apr; 66():358-367. PubMed ID: 29628105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.
    Song TS; Jin Y; Bao J; Kang D; Xie J
    J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient reduction of Cr(VI) in groundwater by a hybrid electro-Pd process.
    Qian A; Liao P; Yuan S; Luo M
    Water Res; 2014 Jan; 48():326-34. PubMed ID: 24134802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene oxide coated coordination polymer nanobelt composite material: a new type of visible light active and highly efficient photocatalyst for Cr(VI) reduction.
    Shi GM; Zhang B; Xu XX; Fu YH
    Dalton Trans; 2015 Jun; 44(24):11155-64. PubMed ID: 25997385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media.
    Choi EK; Park KH; Lee HB; Cho M; Ahn S
    J Environ Sci (China); 2013 Aug; 25(8):1696-702. PubMed ID: 24520710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous Cr(VI) reduction and non-ionic surfactant oxidation by peroxymonosulphate and iron powder.
    Volpe A; Pagano M; Mascolo G; Lopez A; Ciannarella R; Locaputo V
    Chemosphere; 2013 May; 91(9):1250-6. PubMed ID: 23499224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires.
    Mu Y; Wu H; Ai Z
    J Hazard Mater; 2015 Nov; 298():1-10. PubMed ID: 25988715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential Process Combination of Photocatalytic Oxidation and Dark Reduction for the Removal of Organic Pollutants and Cr(VI) using Ag/TiO
    Choi Y; Koo MS; Bokare AD; Kim DH; Bahnemann DW; Choi W
    Environ Sci Technol; 2017 Apr; 51(7):3973-3981. PubMed ID: 28277657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photo-reduction of Cr(VI) using chitosan supported zinc oxide materials.
    Preethi J; Farzana MH; Meenakshi S
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1783-1793. PubMed ID: 28242333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application.
    Mabbett AN; Sanyahumbi D; Yong P; Macaskie LE
    Environ Sci Technol; 2006 Feb; 40(3):1015-21. PubMed ID: 16509351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant extract as environmental-friendly green catalyst for the reduction of hexavalent chromium in tannery effluent.
    Johnson P; Loganathan C; Krishnan V; Sakayanathan P; Raji V; Vijayan S; Sathishkumar P; Murugesan K; Palvannan T
    Environ Technol; 2018 Jun; 39(11):1376-1383. PubMed ID: 28488473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ternary assembly of g-C
    Hu X; Wang W; Xie G; Wang H; Tan X; Jin Q; Zhou D; Zhao Y
    Chemosphere; 2019 Feb; 216():733-741. PubMed ID: 30391895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.