BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32505995)

  • 1. Modification of the zeta potential of montmorillonite to achieve high active pharmaceutical ingredient nanoparticle loading and stabilization with optimum dissolution properties.
    Kumar A; Hodnett BK; Hudson S; Davern P
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111120. PubMed ID: 32505995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier particle mediated stabilization and isolation of valsartan nanoparticles.
    Kumar A; Davern P; Hodnett BK; Hudson SP
    Colloids Surf B Biointerfaces; 2019 Mar; 175():554-563. PubMed ID: 30579056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrier particle design for stabilization and isolation of drug nanoparticles.
    Tierney T; Bodnár K; Rasmuson Å; Hudson S
    Int J Pharm; 2017 Feb; 518(1-2):111-118. PubMed ID: 27884714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, stabilisation, isolation and tableting of valsartan nanoparticles using a semi-continuous carrier particle mediated process.
    Kumar A; Ramisetty KA; Bordignon S; Hodnett BK; Davern P; Hudson S
    Int J Pharm; 2021 Mar; 597():120199. PubMed ID: 33486046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of carrier particle surface properties on drug nanoparticle attachment.
    Bergillos-Ruiz M; Kumar A; Hodnett BK; Davern P; Rasmuson Å; Hudson SP
    Int J Pharm; 2024 Feb; 651():123743. PubMed ID: 38151103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards rational design of API-poly(D, L-lactide-co-glycolide) based micro- and nanoparticles: The role of API-polymer compatibility prediction.
    Iemtsev A; Zumaya ALV; Dinh M; Hassouna F; Fulem M
    Int J Pharm; 2024 Jan; 650():123724. PubMed ID: 38123107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization.
    Homayouni A; Amini M; Sohrabi M; Varshosaz J; Nokhodchi A
    Int J Pharm; 2019 May; 562():124-134. PubMed ID: 30898640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmaceutical nanoparticle isolation using CO
    Verma V; Ryan KM; Padrela L
    Int J Pharm; 2021 Jan; 592():120032. PubMed ID: 33171263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of stable nanocarriers by in situ ion pairing during block-copolymer-directed rapid precipitation.
    Pinkerton NM; Grandeury A; Fisch A; Brozio J; Riebesehl BU; Prud'homme RK
    Mol Pharm; 2013 Jan; 10(1):319-28. PubMed ID: 23259920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP.
    Homayouni A; Sohrabi M; Amini M; Varshosaz J; Nokhodchi A
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():185-196. PubMed ID: 30813018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation.
    Alshweiat A; Katona G; Csóka I; Ambrus R
    Eur J Pharm Sci; 2018 Sep; 122():94-104. PubMed ID: 29908301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drastic Modulation of Molecular Packing and Intrinsic Dissolution Rates by Meniscus-Guided Coating of Extremely Confined Pharmaceutical Thin Films.
    Kafle P; Sanghavi R; Khasbaatar A; Punjani S; Davies DW; Diao Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56519-56529. PubMed ID: 34783517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of apigenin nanoparticles using antisolvent crystallization technology: A comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies.
    Yan T; Wang H; Song X; Yan T; Ding Y; Luo K; Zhen J; He G; Nian L; Wang S; Wang Z
    Int J Pharm; 2022 Aug; 624():121981. PubMed ID: 35792228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast dissolution of poorly water soluble drugs from fluidized bed coated nanocomposites: Impact of carrier size.
    Azad M; Moreno J; Bilgili E; Davé R
    Int J Pharm; 2016 Nov; 513(1-2):319-331. PubMed ID: 27639622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clay as a matrix former for spray drying of drug nanosuspensions.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2014 Apr; 465(1-2):83-9. PubMed ID: 24560641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development.
    Czyz S; Wewers M; Finke JH; Kwade A; van Eerdenbrugh B; Juhnke M; Bunjes H
    Eur J Pharm Biopharm; 2020 Jul; 152():63-71. PubMed ID: 32376369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique.
    Zu Y; Wu W; Zhao X; Li Y; Wang W; Zhong C; Zhang Y; Zhao X
    Int J Pharm; 2014 Aug; 471(1-2):366-76. PubMed ID: 24882039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redispersible fast dissolving nanocomposite microparticles of poorly water-soluble drugs.
    Bhakay A; Azad M; Bilgili E; Dave R
    Int J Pharm; 2014 Jan; 461(1-2):367-79. PubMed ID: 24333905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the apparent solubility and bioavailability of Tadalafil nanoparticles via antisolvent precipitation.
    Rao Q; Qiu Z; Huang D; Lu T; Zhang ZJ; Luo D; Pan P; Zhang L; Liu Y; Guan S; Li Q
    Eur J Pharm Sci; 2019 Feb; 128():222-231. PubMed ID: 30553058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.