BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32506188)

  • 1. Biomass estimation of aboveground tree components for Turkey oak (Quercus cerris L.) in south-eastern Turkey.
    Saglam S; Ozdemir E; Ozkan UY; Demirel T; Makineci E
    Environ Monit Assess; 2020 Jun; 192(7):418. PubMed ID: 32506188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of fresh sprout biomass based on tree variables of pollarding Turkey oak (Quercus cerris L.).
    Saglam S; Ozdemir E; Ozkan UY; Demirel T; Makineci E
    Environ Monit Assess; 2021 Jan; 193(2):83. PubMed ID: 33495913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bark thickness models for oak forests being converted from coppice to high forests in Northwestern Turkey.
    Yilmaz E; Ozdemir E; Makineci E
    Environ Monit Assess; 2021 Oct; 193(11):728. PubMed ID: 34657980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass, carbon and nitrogen in single tree components of grey poplar (Populus × canescens) in an uncultivated habitat in Van, Turkey.
    Özcan Y; Makineci E; Özdemir E
    Environ Monit Assess; 2020 May; 192(6):363. PubMed ID: 32405707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring tree diameter using a LiDAR-equipped smartphone: a comparison of smartphone- and caliper-based DBH.
    Gülci S; Yurtseven H; Akay AO; Akgul M
    Environ Monit Assess; 2023 May; 195(6):678. PubMed ID: 37191833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Additive aboveground biomass equations based on different predictors for natural Tilia Linn].
    Wang JH; Li FR; Dong LH
    Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3685-3695. PubMed ID: 30460816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Constructing biomass models for natural
    Xie LF; Li FR; Dong LH
    Ying Yong Sheng Tai Xue Bao; 2022 Jul; 33(7):1937-1947. PubMed ID: 36052798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparison of artificial neural network with compatible biomass model for predicting aboveground biomass of individual tree].
    Liang RT; Wang YF; Qiu SY; Sun YJ; Xie YH
    Ying Yong Sheng Tai Xue Bao; 2022 Jan; 33(1):9-16. PubMed ID: 35224920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium.
    André F; Jonard M; Ponette Q
    Sci Total Environ; 2010 May; 408(11):2285-94. PubMed ID: 20231032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aboveground biomass allocation, additive biomass and carbon sequestration models for
    Ganamé M; Bayen P; Dimobe K; Ouédraogo I; Thiombiano A
    Heliyon; 2020 Apr; 6(4):e03805. PubMed ID: 32368649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual tree basal area increment model for sessile oak (Quercus petraea (Matt.) Liebl.) in coppice-originated stands.
    Ozdemir E
    Environ Monit Assess; 2021 May; 193(6):357. PubMed ID: 34032942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Predicting models of leaf area for trees in Larix olgensis plantation.].
    Xie LF; Dong LH; Li FR
    Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):2843-2851. PubMed ID: 30411559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Aboveground architecture and biomass distribution of Quercus variabilis].
    Yu BY; Zhang WH; Hu XJ; Shen JP; Zhen XY; Yang XZ
    Ying Yong Sheng Tai Xue Bao; 2015 Aug; 26(8):2265-72. PubMed ID: 26685587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Stand-level biomass estimation models for the tree layer of main forest types in East Daxing'an Mountains, China.].
    Dong LH; Li FR
    Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):2825-2834. PubMed ID: 30411557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evaluation of different forest structural indices to predict the stand aboveground biomass of even-aged Scotch pine (Pinus sylvestris L.) forests in Kunduz, Northern Turkey.
    Ercanli İ; Kahriman A
    Environ Monit Assess; 2015 Mar; 187(3):90. PubMed ID: 25663395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved allometric models to estimate the aboveground biomass of tropical trees.
    Chave J; Réjou-Méchain M; Búrquez A; Chidumayo E; Colgan MS; Delitti WB; Duque A; Eid T; Fearnside PM; Goodman RC; Henry M; Martínez-Yrízar A; Mugasha WA; Muller-Landau HC; Mencuccini M; Nelson BW; Ngomanda A; Nogueira EM; Ortiz-Malavassi E; Pélissier R; Ploton P; Ryan CM; Saldarriaga JG; Vieilledent G
    Glob Chang Biol; 2014 Oct; 20(10):3177-90. PubMed ID: 24817483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Branch quantity distribution simulation for Pinus koraiensis plantation in Heilongjiang Pro-vince, China.].
    Zheng Y; Dong LH; Li FR
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2172-2180. PubMed ID: 29737124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the effect of abandoning coppice management on carbon sequestration by oak forests in Turkey with a modeling approach.
    Lee J; Makineci E; Tolunay D; Son Y
    Sci Total Environ; 2018 Nov; 640-641():400-405. PubMed ID: 29864656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-evaluation of individual diameter : height allometric models to improve biomass estimation of tropical trees.
    Ledo A; Cornulier T; Illian JB; Iida Y; Kassim AR; Burslem DF
    Ecol Appl; 2016 Dec; 26(8):2374-2380. PubMed ID: 27907254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata and Trichilia dregeana.
    Daba DE; Soromessa T
    Carbon Balance Manag; 2019 Dec; 14(1):18. PubMed ID: 31858282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.