BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32506194)

  • 1. Analytical validation of a novel targeted next-generation sequencing assay for mutation detection in thyroid nodule aspirates and tissue.
    Verrienti A; Pecce V; Abballe L; Ramundo V; Falcone R; Inanloo Nigi Jak F; Brunelli C; Fadda G; Bosco D; Ascoli V; Carletti R; Di Gioia C; Grani G; Sponziello M
    Endocrine; 2020 Aug; 69(2):451-455. PubMed ID: 32506194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrifuged supernatants from FNA provide a liquid biopsy option for clinical next-generation sequencing of thyroid nodules.
    Ye W; Hannigan B; Zalles S; Mehrotra M; Barkoh BA; Williams MD; Cabanillas ME; Edeiken-Monroe B; Hu P; Duose D; Wistuba II; Medeiros LJ; Stewart J; Luthra R; Roy-Chowdhuri S
    Cancer Cytopathol; 2019 Mar; 127(3):146-160. PubMed ID: 30620446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyroid cytology smear slides: An untapped resource for ThyroSeq testing.
    Nikiforova MN; Lepe M; Tolino LA; Miller ME; Ohori NP; Wald AI; Landau MS; Kaya C; Malapelle U; Bellevicine C; Troncone G; Nikiforov YE; Baloch Z
    Cancer Cytopathol; 2021 Jan; 129(1):33-42. PubMed ID: 32697051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology.
    Le Mercier M; D'Haene N; De Nève N; Blanchard O; Degand C; Rorive S; Salmon I
    Histopathology; 2015 Jan; 66(2):215-24. PubMed ID: 24834793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Young investigator challenge: Can the Ion AmpliSeq Cancer Hotspot Panel v2 be used for next-generation sequencing of thyroid FNA samples?
    Bellevicine C; Sgariglia R; Malapelle U; Vigliar E; Nacchio M; Ciancia G; Eszlinger M; Paschke R; Troncone G
    Cancer Cytopathol; 2016 Nov; 124(11):776-784. PubMed ID: 27717198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical validity of a microRNA-based assay for diagnosing indeterminate thyroid FNA smears from routinely prepared cytology slides.
    Benjamin H; Schnitzer-Perlman T; Shtabsky A; VandenBussche CJ; Ali SZ; Kolar Z; Pagni F; ; Bar D; Meiri E
    Cancer Cytopathol; 2016 Oct; 124(10):711-721. PubMed ID: 27223344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules.
    Nikiforova MN; Mercurio S; Wald AI; Barbi de Moura M; Callenberg K; Santana-Santos L; Gooding WE; Yip L; Ferris RL; Nikiforov YE
    Cancer; 2018 Apr; 124(8):1682-1690. PubMed ID: 29345728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-Generation Sequencing Identifies Gene Mutations That Are Predictive of Malignancy in Residual Needle Rinses Collected From Fine-Needle Aspirations of Thyroid Nodules.
    Fuller MY; Mody D; Hull A; Pepper K; Hendrickson H; Olsen R
    Arch Pathol Lab Med; 2018 Feb; 142(2):178-183. PubMed ID: 28537807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneously Detection of 50 Mutations at 20 Sites in the BRAF and RAS Genes by Multiplexed Single-Nucleotide Primer Extension Assay Using Fine-Needle Aspirates of Thyroid Nodules.
    Stence AA; Gailey MP; Robinson RA; Jensen CS; Ma D
    Yale J Biol Med; 2015 Dec; 88(4):351-8. PubMed ID: 26604858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoperative detection of malignancy in fine-needle aspiration cytology (FNAC) smears with indeterminate cytology (Bethesda III, IV) by a combined molecular classifier.
    Titov S; Demenkov PS; Lukyanov SA; Sergiyko SV; Katanyan GA; Veryaskina YA; Ivanov MK
    J Clin Pathol; 2020 Nov; 73(11):722-727. PubMed ID: 32213552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allele-specific PCR with competitive probe blocking for sensitive and specific detection of BRAF V600E in thyroid fine-needle aspiration specimens.
    Smith GD; Zhou L; Rowe LR; Jarboe EA; Collins BT; Bentz JS; Wittwer CT; Chadwick BE
    Acta Cytol; 2011; 55(6):576-83. PubMed ID: 22156469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving towards a local testing solution for undetermined thyroid fine-needle aspirates: validation of a novel custom DNA-based NGS panel.
    Sgariglia R; Nacchio M; Migliatico I; Vigliar E; Malapelle U; Pisapia P; De Luca C; Iaccarino A; Salvatore D; Masone S; Troncone G; Bellevicine C
    J Clin Pathol; 2022 Jul; 75(7):465-471. PubMed ID: 33789920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung.
    Karnes HE; Duncavage EJ; Bernadt CT
    Cancer Cytopathol; 2014 Feb; 122(2):104-13. PubMed ID: 24227699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruling in or ruling out thyroid malignancy by molecular diagnostics of thyroid nodules.
    Eszlinger M; Hegedüs L; Paschke R
    Best Pract Res Clin Endocrinol Metab; 2014 Aug; 28(4):545-57. PubMed ID: 25047205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Analytical Validation of an Expanded Mutation Detection Panel for Next-Generation Sequencing of Thyroid Nodule Aspirates.
    Ablordeppey KK; Timmaraju VA; Song-Yang JW; Yaqoob S; Narick C; Mireskandari A; Finkelstein SD; Kumar G
    J Mol Diagn; 2020 Mar; 22(3):355-367. PubMed ID: 31866571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection of single-nucleotide variant, deletion/insertion, and fusion in lung and thyroid carcinoma using cytology specimen and an RNA-based next-generation sequencing assay.
    Guseva NV; Jaber O; Stence AA; Sompallae K; Bashir A; Sompallae R; Bossler AD; Jensen CS; Ma D
    Cancer Cytopathol; 2018 Mar; 126(3):158-169. PubMed ID: 29364576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Next Generation Sequencing as a Reliable Diagnostic Assay for the Detection of Somatic Mutations in Tumours Using Minimal DNA Amounts from Formalin Fixed Paraffin Embedded Material.
    de Leng WW; Gadellaa-van Hooijdonk CG; Barendregt-Smouter FA; Koudijs MJ; Nijman I; Hinrichs JW; Cuppen E; van Lieshout S; Loberg RD; de Jonge M; Voest EE; de Weger RA; Steeghs N; Langenberg MH; Sleijfer S; Willems SM; Lolkema MP
    PLoS One; 2016; 11(2):e0149405. PubMed ID: 26919633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens.
    Hadd AG; Houghton J; Choudhary A; Sah S; Chen L; Marko AC; Sanford T; Buddavarapu K; Krosting J; Garmire L; Wylie D; Shinde R; Beaudenon S; Alexander EK; Mambo E; Adai AT; Latham GJ
    J Mol Diagn; 2013 Mar; 15(2):234-47. PubMed ID: 23321017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preanalytic variables in quality and quantity of nucleic acids extracted from FNA specimens of thyroid gland nodules collected in CytoLyt: Cellularity and storage time.
    Heymann JJ; Yoxtheimer LM; Park HJ; Fernandez EM; Facey KE; Alperstein SA; Tran HV; Baek I; Scognamiglio T; Rennert H; Siddiqui MT; Song W
    Cancer Cytopathol; 2020 Sep; 128(9):656-672. PubMed ID: 32267620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical and clinical validation of pairwise microRNA expression analysis to identify medullary thyroid cancer in thyroid fine-needle aspiration samples.
    Ciarletto AM; Narick C; Malchoff CD; Massoll NA; Labourier E; Haugh K; Mireskandari A; Finkelstein SD; Kumar G
    Cancer Cytopathol; 2021 Mar; 129(3):239-249. PubMed ID: 33017868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.