These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 32506239)

  • 1. The Intruding Wolbachia Strain from the Moth Fails to Establish Itself in the Fruit Fly Due to Immune and Exclusion Reactions.
    Liu XC; Li YR; Dong B; Li ZX
    Curr Microbiol; 2020 Sep; 77(9):2441-2448. PubMed ID: 32506239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel Wolbachia strain from the rice moth Corcyra cephalonica induces reproductive incompatibility in the whitefly Bemisia tabaci: sequence typing combined with phenotypic evidence.
    Hu HY; Li ZX
    Environ Microbiol Rep; 2015 Jun; 7(3):508-15. PubMed ID: 25683566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transinfected Wolbachia strains induce a complex of cytoplasmic incompatibility phenotypes: Roles of CI factor genes.
    Li J; Dong B; Zhong Y; Li ZX
    Environ Microbiol Rep; 2023 Oct; 15(5):370-382. PubMed ID: 37194361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of the wMel Wolbachia strain is modulated by its titre and by immune genes in Drosophila melanogaster (Wolbachia density and transmission).
    Liu XC; Li ZX
    J Invertebr Pathol; 2021 May; 181():107591. PubMed ID: 33882275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Sequencing of Wolbachia wCer2 from Donor and Novel Hosts Reveals Multiple Incompatibility Factors and Genome Stability after Host Transfers.
    Morrow JL; Schneider DI; Klasson L; Janitz C; Miller WJ; Riegler M
    Genome Biol Evol; 2020 May; 12(5):720-735. PubMed ID: 32163151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect.
    Zhou XF; Li ZX
    Sci Rep; 2016 Dec; 6():39200. PubMed ID: 27982076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wolbachia infection alters olfactory-cued locomotion in Drosophila spp.
    Peng Y; Nielsen JE; Cunningham JP; McGraw EA
    Appl Environ Microbiol; 2008 Jul; 74(13):3943-8. PubMed ID: 18456851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversifying selection and host adaptation in two endosymbiont genomes.
    Brownlie JC; Adamski M; Slatko B; McGraw EA
    BMC Evol Biol; 2007 Apr; 7():68. PubMed ID: 17470297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paternal Grandmother Age Affects the Strength of
    Layton EM; On J; Perlmutter JI; Bordenstein SR; Shropshire JD
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690673
    [No Abstract]   [Full Text] [Related]  

  • 10. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans.
    Osborne SE; Leong YS; O'Neill SL; Johnson KN
    PLoS Pathog; 2009 Nov; 5(11):e1000656. PubMed ID: 19911047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wolbachia Infection Associated with Increased Recombination in
    Singh ND
    G3 (Bethesda); 2019 Jan; 9(1):229-237. PubMed ID: 30459180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host.
    Goto S; Anbutsu H; Fukatsu T
    Appl Environ Microbiol; 2006 Jul; 72(7):4805-10. PubMed ID: 16820474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable fitness effects of Wolbachia infection in Drosophila melanogaster.
    Fry AJ; Palmer MR; Rand DM
    Heredity (Edinb); 2004 Oct; 93(4):379-89. PubMed ID: 15305172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High anti-viral protection without immune upregulation after interspecies Wolbachia transfer.
    Chrostek E; Marialva MS; Yamada R; O'Neill SL; Teixeira L
    PLoS One; 2014; 9(6):e99025. PubMed ID: 24911519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New
    Korenskaia AE; Shishkina OD; Klimenko AI; Andreenkova OV; Bobrovskikh MA; Shatskaya NV; Vasiliev GV; Gruntenko NE
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555851
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Gruntenko NE; Karpova EK; Adonyeva NV; Andreenkova OV; Burdina EV; Ilinsky YY; Bykov RA; Menshanov PN; Rauschenbach IY
    J Exp Biol; 2019 Feb; 222(Pt 4):. PubMed ID: 30679245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No detectable effect of
    Shi M; White VL; Schlub T; Eden JS; Hoffmann AA; Holmes EC
    Proc Biol Sci; 2018 Jul; 285(1883):. PubMed ID: 30051873
    [No Abstract]   [Full Text] [Related]  

  • 18. [Influence of Drosophila melanogaster genotype on biological effects of endocymbiont Wolbachia (stamm wMelPop)].
    Voronin DA; Bochernikov AM; Baricheva EM; Zakharov IK; Kiseleva EV
    Tsitologiia; 2009; 51(4):335-45. PubMed ID: 19505052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Gut Commensal Microbiome of
    Simhadri RK; Fast EM; Guo R; Schultz MJ; Vaisman N; Ortiz L; Bybee J; Slatko BE; Frydman HM
    mSphere; 2017; 2(5):. PubMed ID: 28932814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete de novo assembly of
    Jacobs J; Nakamoto A; Mastoras M; Loucks H; Mirchandani C; Karim L; Penunuri G; Wanket C; Russell SL
    Res Sq; 2024 Jun; ():. PubMed ID: 38946980
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.