These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 32506574)
1. The influence of immune activation on thermal tolerance along a latitudinal cline. Hector TE; Sgrò CM; Hall MD J Evol Biol; 2020 Sep; 33(9):1224-1234. PubMed ID: 32506574 [TBL] [Abstract][Full Text] [Related]
2. Anticipating change: The impact of simulated seasonal heterogeneity on heat tolerances along a latitudinal cline. Lush J; Sgrò CM; Hall MD Ecology; 2024 Jul; 105(7):e4359. PubMed ID: 38877760 [TBL] [Abstract][Full Text] [Related]
3. Acclimation to warmer temperatures can protect host populations from both further heat stress and the potential invasion of pathogens. Hector TE; Shocket MS; Sgrò CM; Hall MD Glob Chang Biol; 2024 Jun; 30(6):e17341. PubMed ID: 38837568 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. Sgrò CM; Overgaard J; Kristensen TN; Mitchell KA; Cockerell FE; Hoffmann AA J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849 [TBL] [Abstract][Full Text] [Related]
5. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. van Heerwaarden B; Lee RF; Overgaard J; Sgrò CM J Evol Biol; 2014 Nov; 27(11):2541-53. PubMed ID: 25262984 [TBL] [Abstract][Full Text] [Related]
6. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster. Cockerell FE; Sgrò CM; McKechnie SW J Insect Physiol; 2014 Jan; 60():136-44. PubMed ID: 24333150 [TBL] [Abstract][Full Text] [Related]
7. Pathogen exposure disrupts an organism's ability to cope with thermal stress. Hector TE; Sgrò CM; Hall MD Glob Chang Biol; 2019 Nov; 25(11):3893-3905. PubMed ID: 31148326 [TBL] [Abstract][Full Text] [Related]
8. How much starvation, desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper thermal limits are affected? Manenti T; Cunha TR; Sørensen JG; Loeschcke V J Insect Physiol; 2018; 111():1-7. PubMed ID: 30273554 [TBL] [Abstract][Full Text] [Related]
9. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. Gerken AR; Mackay TF; Morgan TJ J Therm Biol; 2016 Jul; 59():77-85. PubMed ID: 27264892 [TBL] [Abstract][Full Text] [Related]
10. Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster. Lockwood BL; Gupta T; Scavotto R J Evol Biol; 2018 Feb; 31(2):323-331. PubMed ID: 29284184 [TBL] [Abstract][Full Text] [Related]
11. A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival. Boardman L; Mitchell KA; Terblanche JS; Sørensen JG J Insect Physiol; 2018 Apr; 106(Pt 3):179-188. PubMed ID: 29038013 [TBL] [Abstract][Full Text] [Related]
12. Heat tolerance in Drosophila subobscura along a latitudinal gradient: Contrasting patterns between plastic and genetic responses. Castañeda LE; Rezende EL; Santos M Evolution; 2015 Oct; 69(10):2721-34. PubMed ID: 26292981 [TBL] [Abstract][Full Text] [Related]
14. Fitness surfaces and local thermal adaptation in Drosophila along a latitudinal gradient. Alruiz JM; Peralta-Maraver I; Cavieres G; Bozinovic F; Rezende EL Ecol Lett; 2024 Apr; 27(4):e14405. PubMed ID: 38623056 [TBL] [Abstract][Full Text] [Related]
15. Experimental evolution on heat tolerance and thermal performance curves under contrasting thermal selection in Drosophila subobscura. Mesas A; Jaramillo A; Castañeda LE J Evol Biol; 2021 May; 34(5):767-778. PubMed ID: 33662149 [TBL] [Abstract][Full Text] [Related]
16. Does local adaptation along a latitudinal cline shape plastic responses to combined thermal and nutritional stress? Chakraborty A; Sgrò CM; Mirth CK Evolution; 2020 Sep; 74(9):2073-2087. PubMed ID: 33616935 [TBL] [Abstract][Full Text] [Related]
17. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Davis HE; Cheslock A; MacMillan HA Sci Rep; 2021 May; 11(1):10876. PubMed ID: 34035382 [TBL] [Abstract][Full Text] [Related]
19. Thermal limits in the face of infectious disease: How important are pathogens? Hector TE; Sgrò CM; Hall MD Glob Chang Biol; 2021 Oct; 27(19):4469-4480. PubMed ID: 34170603 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]