These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32507059)

  • 1. Deep Support Vector Machines for the Identification of Stress Condition from Electrodermal Activity.
    Sánchez-Reolid R; Martínez-Rodrigo A; López MT; Fernández-Caballero A
    Int J Neural Syst; 2020 Jul; 30(7):2050031. PubMed ID: 32507059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodermal Activity Sensor for Classification of Calm/Distress Condition.
    Zangróniz R; Martínez-Rodrigo A; Pastor JM; López MT; Fernández-Caballero A
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29023403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review.
    Sánchez-Reolid R; López de la Rosa F; Sánchez-Reolid D; López MT; Fernández-Caballero A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodermal Activity Based Pre-surgery Stress Detection Using a Wrist Wearable.
    S AA; P S; V S; S SK; A S; Akl TJ; P PS; Sivaprakasam M
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):92-100. PubMed ID: 30668508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers.
    Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psychological stress level detection based on electrodermal activity.
    Liu Y; Du S
    Behav Brain Res; 2018 Apr; 341():50-53. PubMed ID: 29274343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Parametric Classifiers Based Emotion Classification Using Electrodermal Activity and Modified Hjorth Features.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2021 May; 281():163-167. PubMed ID: 34042726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and Machine Learning.
    Zhu L; Spachos P; Ng PC; Yu Y; Wang Y; Plataniotis K; Hatzinakos D
    IEEE J Biomed Health Inform; 2023 May; 27(5):2155-2165. PubMed ID: 37022004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances with support vector machines for novel drug discovery.
    Maltarollo VG; Kronenberger T; Espinoza GZ; Oliveira PR; Honorio KM
    Expert Opin Drug Discov; 2019 Jan; 14(1):23-33. PubMed ID: 30488731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mild Dehydration Identification Using Machine Learning to Assess Autonomic Responses to Cognitive Stress.
    Posada-Quintero HF; Reljin N; Moutran A; Georgopalis D; Lee EC; Giersch GEW; Casa DJ; Chon KH
    Nutrients; 2019 Dec; 12(1):. PubMed ID: 31877912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Analysis of Electrodermal Activity Decomposition Methods in Emotion Detection Using Machine Learning.
    Sriram Kumar P ; Govarthan PK; Ganapathy N; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():73-77. PubMed ID: 37203612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management.
    Garla V; Taylor C; Brandt C
    J Biomed Inform; 2013 Oct; 46(5):869-75. PubMed ID: 23845911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Perceived Human Stress using Physiological Signals.
    Arsalan A; Majid M; Anwar SM; Bagci U
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1247-1250. PubMed ID: 31946118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminating stress from cognitive load using a wearable EDA device.
    Setz C; Arnrich B; Schumm J; La Marca R; Tröster G; Ehlert U
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):410-7. PubMed ID: 19906598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of Spectral Indices of Electrodermal Activity with a Wearable Device.
    McNaboe RQ; Hossain MB; Kong Y; Chon KH; Posada-Quintero HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6991-6994. PubMed ID: 34892712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Cross-Output Knowledge Transfer Using Stacked-Structure Least-Squares Support Vector Machines.
    Wang G; Choi KS; Teoh JY; Lu J
    IEEE Trans Cybern; 2022 May; 52(5):3207-3220. PubMed ID: 32780705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning of support vector machines with class probability output networks.
    Kim S; Yu Z; Kil RM; Lee M
    Neural Netw; 2015 Apr; 64():19-28. PubMed ID: 25304363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders.
    Smolander J; Dehmer M; Emmert-Streib F
    FEBS Open Bio; 2019 Jul; 9(7):1232-1248. PubMed ID: 31074948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Implementation of an Ultra-Low Resource Electrodermal Activity Sensor for Wearable Applications
    Pope GC; Halter RJ
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.