These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32507169)

  • 1. The change from hydrophilicity to hydrophobicity of HEC/PAA complex membrane for water-in-oil emulsion separation: Thermal versus chemical treatment.
    Babiker DMD; Zhu L; Yagoub H; Lin F; Altam AA; Liang S; Jin Y; Yang S
    Carbohydr Polym; 2020 Aug; 241():116343. PubMed ID: 32507169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions.
    Zhang W; Zhu Y; Liu X; Wang D; Li J; Jiang L; Jin J
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):856-60. PubMed ID: 24307602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: adsorption and thickening effect.
    Sun W; Sun D; Wei Y; Liu S; Zhang S
    J Colloid Interface Sci; 2007 Jul; 311(1):228-36. PubMed ID: 17379236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil-in-Water Emulsions Stabilized by Saponified Epoxidized Soybean Oil-Grafted Hydroxyethyl Cellulose.
    Huang X; Li Q; Liu H; Shang S; Shen M; Song J
    J Agric Food Chem; 2017 May; 65(17):3497-3504. PubMed ID: 28418657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions.
    Zhou K; Zhang QG; Li HM; Guo NN; Zhu AM; Liu QL
    Nanoscale; 2014 Sep; 6(17):10363-9. PubMed ID: 25073443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fouling mitigation and cleanability of TiO
    Kovács I; Veréb G; Kertész S; Hodúr C; László Z
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):34912-34921. PubMed ID: 29288296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode.
    Han G; de Wit JS; Chung TS
    Water Res; 2015 Sep; 81():54-63. PubMed ID: 26043371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of oil-water emulsion and adsorption of Cu(II) on a chitosan-cellulose acetate-TiO
    Yu H; Liu H; Yuan X; Ding W; Li Y; Wang J
    Chemosphere; 2019 Nov; 235():239-247. PubMed ID: 31260864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spray-assisted LBL assembly of chitosan/nanocellulose as coatings of commercial membranes for oil-in-water emulsion separation.
    Cai J; Chen Q; Chang C
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124852. PubMed ID: 37182625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil-in-water emulsion separation: Fouling of alumina membranes with and without a silicon carbide deposition in constant flux filtration mode.
    Chen M; Heijman SGJ; Luiten-Olieman MWJ; Rietveld LC
    Water Res; 2022 Jun; 216():118267. PubMed ID: 35306459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil-water separation process.
    Duong PH; Chung TS; Wei S; Irish L
    Environ Sci Technol; 2014 Apr; 48(8):4537-45. PubMed ID: 24621207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of oil-water emulsion by cellulose acetate ultrafiltration membranes.
    Shoba B; Jeyanthi J
    Environ Technol; 2024 Jun; 45(15):2891-2907. PubMed ID: 36924447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing of bacterial cellulose-based superhydrophilic/underwater superoleophobic membrane for oil/water separation.
    Wahid F; Zhao XJ; Duan YX; Zhao XQ; Jia SR; Zhong C
    Carbohydr Polym; 2021 Apr; 257():117611. PubMed ID: 33541642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient removal of emulsified oil from oily wastewater by microfiltration carbon membranes made from phenolic resin/coal.
    Li H; Zhang B; Wu Y
    Environ Technol; 2024 Jul; 45(18):3692-3705. PubMed ID: 37326284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled CMC/UiO-66-NH
    Ma L; Wan Y; Wang T; Liu Y; Yin Y; Zhang L
    Langmuir; 2022 Oct; 38(41):12499-12509. PubMed ID: 36194832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of asymmetric wettability in nanofiber membrane by electrospinning technique on separation of oil/water emulsion.
    Bae J; Kim H; Kim KS; Choi H
    Chemosphere; 2018 Aug; 204():235-242. PubMed ID: 29660536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green Fabrication of Superhydrophilic/Underwater Superoleophobic Composite Membrane for High-Efficiency Oil/Water Separation in Harsh Environments.
    Xu X; Kao H; Yu X; Zhou J; Hou P; Xu G; Chen J
    Langmuir; 2024 Jun; 40(22):11661-11669. PubMed ID: 38781140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-Based Aerogel Membrane for Robust Oil-in-Water Emulsion Separation.
    Chaudhary JP; Vadodariya N; Nataraj SK; Meena R
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24957-62. PubMed ID: 26485061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyester fabrics coated with cupric hydroxide and cellulose for the treatment of kitchen oily wastewater.
    Zhang Z; Wei J; Zhang X; Xiao H; Liu Y; Lu M
    Chemosphere; 2022 Sep; 302():134840. PubMed ID: 35523293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized Superwettable Fabric with Switchable Wettability for Efficient Oily Wastewater Purification, in Situ Chemical Reaction System Separation, and Photocatalysis Degradation.
    Ma L; He J; Wang J; Zhou Y; Zhao Y; Li Y; Liu X; Peng L; Qu M
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43751-43765. PubMed ID: 31659888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.