BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 32507171)

  • 1. Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation.
    Zhang X; Wang B; Qin X; Ye S; Shi Y; Feng Y; Han W; Liu C; Shen C
    Carbohydr Polym; 2020 Aug; 241():116361. PubMed ID: 32507171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic metal organic framework doped polycarbonate porous monolith for efficient selective removal oil from water.
    Wang Y; Yan J; Wang J; Zhang X; Wei L; Du Y; Yu B; Ye S
    Chemosphere; 2020 Dec; 260():127583. PubMed ID: 32698115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superhydrophobic three-dimensional porous ethyl cellulose absorbent with micro/nano-scale hierarchical structures for highly efficient removal of oily contaminants from water.
    Lu Y; Yuan W
    Carbohydr Polym; 2018 Jul; 191():86-94. PubMed ID: 29661326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic cellulose acetate/multiwalled carbon nanotube monolith with fiber cluster network for selective oil/water separation.
    Zhang X; Wang B; Wang B; Feng Y; Han W; Liu C; Shen C
    Carbohydr Polym; 2021 May; 259():117750. PubMed ID: 33674005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Characterization of Cellulose Grafted with Epoxidized Soybean Oil Aerogels for Oil-Absorbing Materials.
    Xu X; Dong F; Yang X; Liu H; Guo L; Qian Y; Wang A; Wang S; Luo J
    J Agric Food Chem; 2019 Jan; 67(2):637-643. PubMed ID: 30601645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform.
    Xin Y; Xiong Q; Bai Q; Miyamoto M; Li C; Shen Y; Uyama H
    Carbohydr Polym; 2017 Feb; 157():429-437. PubMed ID: 27987947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic and superoleophilic porous reduced graphene oxide/polycarbonate monoliths for high-efficiency oil/water separation.
    Wang Y; Wang B; Wang J; Ren Y; Xuan C; Liu C; Shen C
    J Hazard Mater; 2018 Feb; 344():849-856. PubMed ID: 29190582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.
    Shang Y; Si Y; Raza A; Yang L; Mao X; Ding B; Yu J
    Nanoscale; 2012 Dec; 4(24):7847-54. PubMed ID: 23149675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.
    Kollarigowda RH; Abraham S; Montemagno CD
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29812-29819. PubMed ID: 28796485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery.
    He J; Zhao H; Li X; Su D; Zhang F; Ji H; Liu R
    J Hazard Mater; 2018 Mar; 346():199-207. PubMed ID: 29275109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation.
    Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation.
    Wang N; Wang Y; Shang B; Wen P; Peng B; Deng Z
    J Colloid Interface Sci; 2018 Dec; 531():300-310. PubMed ID: 30041108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(dimethylsiloxane) oil absorbent with a three-dimensionally interconnected porous structure and swellable skeleton.
    Zhang A; Chen M; Du C; Guo H; Bai H; Li L
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10201-6. PubMed ID: 24040904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic and self-recoverable cellulose nanofibrils/N-alkylated chitosan/poly(vinyl alcohol) sponge for selective and versatile oil/water separation.
    Li M; Liu H; Liu J; Pei Y; Zheng X; Tang K; Wang F
    Int J Biol Macromol; 2021 Dec; 192():169-179. PubMed ID: 34624380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Freeze-Drying-Free Strategy to Fabricate a Biobased Tough Aerogel for Separation of Oil/Water Mixtures.
    Li K; Luo Q; Xu J; Li K; Zhang W; Liu L; Ma J; Zhang H
    J Agric Food Chem; 2020 Mar; 68(12):3779-3785. PubMed ID: 32142264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers.
    He X; Chen T; Jiang T; Wang C; Luan Y; Liu P; Liu Z
    Carbohydr Polym; 2021 May; 260():117790. PubMed ID: 33712138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of oil-water emulsion and adsorption of Cu(II) on a chitosan-cellulose acetate-TiO
    Yu H; Liu H; Yuan X; Ding W; Li Y; Wang J
    Chemosphere; 2019 Nov; 235():239-247. PubMed ID: 31260864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High hydrophobic ZIF-8@cellulose nanofibers/chitosan double network aerogel for oil adsorbent and oil/water separation.
    Si R; Luo H; Zhang T; Pu J
    Int J Biol Macromol; 2023 May; 238():124008. PubMed ID: 36933590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of oil-water emulsion by cellulose acetate ultrafiltration membranes.
    Shoba B; Jeyanthi J
    Environ Technol; 2024 Jun; 45(15):2891-2907. PubMed ID: 36924447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of a three-dimensional hydroxyapatite monolith for protein adsorption.
    Lyu Y; Asoh TA; Uyama H
    J Mater Chem B; 2021 Dec; 9(47):9711-9719. PubMed ID: 34779470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.