BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32507190)

  • 1. Porous composites based on cellulose acetate and alfa-hematite with optical and antimicrobial properties.
    Silva MA; Rocha CV; Gallo J; Felgueiras HP; de Amorim MTP
    Carbohydr Polym; 2020 Aug; 241():116362. PubMed ID: 32507190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional cellulose based silver-functionalized ZnO nanocomposite with controlled geometry: Synthesis, characterization and properties.
    Fu F; Gu J; Zhang R; Xu X; Yu X; Liu L; Liu X; Zhou J; Yao J
    J Colloid Interface Sci; 2018 Nov; 530():433-443. PubMed ID: 29990779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties.
    Wahid F; Duan YX; Hu XH; Chu LQ; Jia SR; Cui JD; Zhong C
    Int J Biol Macromol; 2019 Jul; 132():692-700. PubMed ID: 30946911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and properties of cellulose/silver nanocomposite fibers.
    Li R; He M; Li T; Zhang L
    Carbohydr Polym; 2015 Jan; 115():269-75. PubMed ID: 25439895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose acetate nanofibers embedded with AgNPs anchored TiO
    Jatoi AW; Kim IS; Ni QQ
    Carbohydr Polym; 2019 Mar; 207():640-649. PubMed ID: 30600049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles.
    Abou Hammad AB; Abd El-Aziz ME; Hasanin MS; Kamel S
    Carbohydr Polym; 2019 Jul; 216():54-62. PubMed ID: 31047082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract.
    Muthulakshmi L; Rajini N; Nellaiah H; Kathiresan T; Jawaid M; Rajulu AV
    Int J Biol Macromol; 2017 Feb; 95():1064-1071. PubMed ID: 27984140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of cellulose/silver nanocomposites from bioflocculant reducing agent.
    Muthulakshmi L; Rajini N; Varada Rajalu A; Siengchin S; Kathiresan T
    Int J Biol Macromol; 2017 Oct; 103():1113-1120. PubMed ID: 28528949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles.
    Prucek R; Tuček J; Kilianová M; Panáček A; Kvítek L; Filip J; Kolář M; Tománková K; Zbořil R
    Biomaterials; 2011 Jul; 32(21):4704-13. PubMed ID: 21507482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent.
    Sivaranjana P; Nagarajan ER; Rajini N; Jawaid M; Rajulu AV
    Int J Biol Macromol; 2017 Jun; 99():223-232. PubMed ID: 28237574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative natural polymer metal nanocomposites and their antimicrobial activity.
    Zahran M; Marei AH
    Int J Biol Macromol; 2019 Sep; 136():586-596. PubMed ID: 31220496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Soluble Cellulose Derivatives as Suitable Matrices for Multifunctional Materials.
    Rincón-Iglesias M; Lizundia E; Lanceros-Méndez S
    Biomacromolecules; 2019 Jul; 20(7):2786-2795. PubMed ID: 31150225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform.
    Kheiri S; Mohamed MGA; Amereh M; Roberts D; Kim K
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110754. PubMed ID: 32279821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose acetate/multi-wall carbon nanotube/Ag nanofiber composite for antibacterial applications.
    Jatoi AW; Ogasawara H; Kim IS; Ni QQ
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110679. PubMed ID: 32204107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose hybrid nanocomposites using Napier grass fibers with in situ generated silver nanoparticles as fillers for antibacterial applications.
    Indira Devi MP; Nallamuthu N; Rajini N; Varada Rajulu A; Hari Ram N; Siengchin S
    Int J Biol Macromol; 2018 Oct; 118(Pt A):99-106. PubMed ID: 29883698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties.
    Sadanand V; Rajini N; Varada Rajulu A; Satyanarayana B
    Carbohydr Polym; 2016 Oct; 150():32-9. PubMed ID: 27312610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of carbon dots-hematite quantum dots-loaded hydroxypropyl cellulose-chitosan nanocomposites for drug delivery, sunlight catalytic and antimicrobial application.
    Chen Y; Cheng H; Wang W; Jin Z; Liu Q; Yang H; Cao Y; Li W; Fakhri A; Gupta VK
    J Photochem Photobiol B; 2021 Jun; 219():112201. PubMed ID: 33962112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable and antibacterial sandwich-like Ag-Pulp/CNF composite paper for oil/water separation.
    Zhu W; Huang W; Zhou W; Qiu Z; Wang Z; Li H; Wang Y; Li J; Xie Y
    Carbohydr Polym; 2020 Oct; 245():116587. PubMed ID: 32718655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composites of Bacterial Cellulose and Small Molecule-Decorated Gold Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds.
    Li Y; Tian Y; Zheng W; Feng Y; Huang R; Shao J; Tang R; Wang P; Jia Y; Zhang J; Zheng W; Yang G; Jiang X
    Small; 2017 Jul; 13(27):. PubMed ID: 28544761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles.
    Pinto RJ; Fernandes SC; Freire CS; Sadocco P; Causio J; Neto CP; Trindade T
    Carbohydr Res; 2012 Feb; 348():77-83. PubMed ID: 22154478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.