These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 32507742)

  • 1. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea.
    Kim S; Alizamir M; Zounemat-Kermani M; Kisi O; Singh VP
    J Environ Manage; 2020 Sep; 270():110834. PubMed ID: 32507742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface water quality index forecasting using multivariate complementing approach reinforced with locally weighted linear regression model.
    Hai T; Ahmadianfar I; Halder B; Heddam S; Al-Areeq AM; Demir V; Kilinc HC; Abba SI; Tan ML; Homod RZ; Yaseen ZM
    Environ Sci Pollut Res Int; 2024 May; 31(22):32382-32406. PubMed ID: 38653893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters.
    Zare Abyaneh H
    J Environ Health Sci Eng; 2014 Jan; 12(1):40. PubMed ID: 24456676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid WT-CNN-GRU-based model for the estimation of reservoir water quality variables considering spatio-temporal features.
    Zamani MG; Nikoo MR; Al-Rawas G; Nazari R; Rastad D; Gandomi AH
    J Environ Manage; 2024 May; 358():120756. PubMed ID: 38599080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online soft measurement method for chemical oxygen demand based on CNN-BiLSTM-Attention algorithm.
    Liu L; Tian X; Ma Y; Lu W; Luo Y
    PLoS One; 2024; 19(6):e0305216. PubMed ID: 38941339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of AI-based hybrid soft computing models for prediction of critical river water quality indicators.
    Gupta S; Gupta SK
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):27829-27845. PubMed ID: 38520661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated deep learning approach for modeling dissolved oxygen concentration at coastal inlets based on hydro-climatic parameters.
    Elnabwy MT; Alshahri AH; El-Gamal AA
    J Environ Manage; 2024 Sep; 367():122018. PubMed ID: 39111007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing machine learning models for total organic carbon prediction by integrating geospatial parameters in river watersheds.
    Oh H; Park HY; Kim JI; Lee BJ; Choi JH; Hur J
    Sci Total Environ; 2024 Sep; 943():173743. PubMed ID: 38848906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting biochemical oxygen demand in European freshwater bodies.
    Vigiak O; Grizzetti B; Udias-Moinelo A; Zanni M; Dorati C; Bouraoui F; Pistocchi A
    Sci Total Environ; 2019 May; 666():1089-1105. PubMed ID: 30970475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four Major South Korea's Rivers Using Deep Learning Models.
    Lee S; Lee D
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29937531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing and predicting water quality index with key water parameters by machine learning models in coastal cities, China.
    Xu J; Mo Y; Zhu S; Wu J; Jin G; Wang YG; Ji Q; Li L
    Heliyon; 2024 Jul; 10(13):e33695. PubMed ID: 39044968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloud-based neuro-fuzzy hydro-climatic model for water quality assessment under uncertainty and sensitivity.
    Jain A; Rallapalli S; Kumar D
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):65259-65275. PubMed ID: 35488149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods.
    Zheng Y; Wei J; Zhang W; Zhang Y; Zhang T; Zhou Y
    J Environ Manage; 2024 Aug; 366():121932. PubMed ID: 39043087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China.
    Shu J; Xia X; Han S; He Z; Pan K; Liu B
    PLoS One; 2024; 19(5):e0302558. PubMed ID: 38776352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of dissolved oxygen influencing factors and concentration prediction using input variable selection technique: A hybrid machine learning approach.
    Liu W; Lin S; Li X; Li W; Deng H; Fang H; Li W
    J Environ Manage; 2024 Apr; 357():120777. PubMed ID: 38581893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative survey between cascade correlation neural network (CCNN) and feedforward neural network (FFNN) machine learning models for forecasting suspended sediment concentration.
    Joshi B; Singh VK; Vishwakarma DK; Ghorbani MA; Kim S; Gupta S; Chandola VK; Rajput J; Chung IM; Yadav KK; Mirzania E; Al-Ansari N; Mattar MA
    Sci Rep; 2024 May; 14(1):10638. PubMed ID: 38724562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water quality monitoring and modeling for an urban storm drainage channel in Thane, India.
    Swarnkar K; Gupta K; Nikam V
    Environ Monit Assess; 2024 Apr; 196(5):440. PubMed ID: 38592560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forecasting standardized precipitation index using data intelligence models: regional investigation of Bangladesh.
    Yaseen ZM; Ali M; Sharafati A; Al-Ansari N; Shahid S
    Sci Rep; 2021 Feb; 11(1):3435. PubMed ID: 33564055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Prediction of Hepatitis E through Ensemble Learning.
    Peng T; Chen X; Wan M; Jin L; Wang X; Du X; Ge H; Yang X
    Int J Environ Res Public Health; 2020 Dec; 18(1):. PubMed ID: 33379298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which riverine water quality parameters can be predicted by meteorologically-driven deep learning?
    Huang S; Wang Y; Xia J
    Sci Total Environ; 2024 Oct; 946():174357. PubMed ID: 38945234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.