These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32507872)
1. Contact electrification between identical polymers as the basis for triboelectric/flexoelectric materials. Šutka A; Mālnieks K; Lapčinskis L; Timusk M; Kalniņš K; Kovaļovs A; Bitenieks J; Knite M; Stevens D; Grunlan J Phys Chem Chem Phys; 2020 Jun; 22(23):13299-13305. PubMed ID: 32507872 [TBL] [Abstract][Full Text] [Related]
2. Probing Contact Electrification: A Cohesively Sticky Problem. Sherrell PC; Sutka A; Shepelin NA; Lapcinskis L; Verners O; Germane L; Timusk M; Fenati RA; Malnieks K; Ellis AV ACS Appl Mater Interfaces; 2021 Sep; 13(37):44935-44947. PubMed ID: 34498850 [TBL] [Abstract][Full Text] [Related]
3. Contact-Electrification between Two Identical Materials: Curvature Effect. Xu C; Zhang B; Wang AC; Zou H; Liu G; Ding W; Wu C; Ma M; Feng P; Lin Z; Wang ZL ACS Nano; 2019 Feb; 13(2):2034-2041. PubMed ID: 30707552 [TBL] [Abstract][Full Text] [Related]
4. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
5. Density of Surface States: Another Key Contributing Factor in Triboelectric Charge Generation. Xu G; Guan D; Fu J; Li X; Li A; Ding W; Zi Y ACS Appl Mater Interfaces; 2022 Feb; 14(4):5355-5362. PubMed ID: 35073035 [TBL] [Abstract][Full Text] [Related]
6. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530 [TBL] [Abstract][Full Text] [Related]
7. Effect of Redox Atmosphere on Contact Electrification of Polymers. Sun LL; Lin SQ; Tang W; Chen X; Wang ZL ACS Nano; 2020 Dec; 14(12):17354-17364. PubMed ID: 33210533 [TBL] [Abstract][Full Text] [Related]
8. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Wang S; Xie Y; Niu S; Lin L; Liu C; Zhou YS; Wang ZL Adv Mater; 2014 Oct; 26(39):6720-8. PubMed ID: 25146891 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Liu Z; Huang Y; Shi Y; Tao X; He H; Chen F; Huang ZX; Wang ZL; Chen X; Qu JP Nat Commun; 2022 Jul; 13(1):4083. PubMed ID: 35835779 [TBL] [Abstract][Full Text] [Related]
11. Electrospinning Triboelectric Laminates: A Pathway for Scaling Energy Harvesters. Linarts A; Sherrell PC; Mālnieks K; Ellis AV; Šutka A Small; 2023 Apr; 19(14):e2205563. PubMed ID: 36596644 [TBL] [Abstract][Full Text] [Related]
12. The Influence of Microscale Surface Roughness on Water-Droplet Contact Electrification. Helseth LE Langmuir; 2019 Jun; 35(25):8268-8275. PubMed ID: 31142118 [TBL] [Abstract][Full Text] [Related]
13. Wind-blown Sand Electrification Inspired Triboelectric Energy Harvesting Based on Homogeneous Inorganic Materials Contact: A Theoretical Study and Prediction. Hu W; Wu W; Zhou HM Sci Rep; 2016 Jan; 6():19912. PubMed ID: 26817411 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Contact Electrification Mechanisms of Selected Polymers and Surface-Functionalized Molecules. Verners O; Das A J Phys Chem B; 2023 Nov; 127(46):10035-10042. PubMed ID: 37944987 [TBL] [Abstract][Full Text] [Related]
15. Cylindrical rotating triboelectric nanogenerator. Bai P; Zhu G; Liu Y; Chen J; Jing Q; Yang W; Ma J; Zhang G; Wang ZL ACS Nano; 2013 Jul; 7(7):6361-6. PubMed ID: 23799926 [TBL] [Abstract][Full Text] [Related]
16. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Xu C; Zi Y; Wang AC; Zou H; Dai Y; He X; Wang P; Wang YC; Feng P; Li D; Wang ZL Adv Mater; 2018 Apr; 30(15):e1706790. PubMed ID: 29508454 [TBL] [Abstract][Full Text] [Related]
17. Mixed Triboelectric and Flexoelectric Charge Transfer at the Nanoscale. Qiao H; Zhao P; Kwon O; Sohn A; Zhuo F; Lee DM; Sun C; Seol D; Lee D; Kim SW; Kim Y Adv Sci (Weinh); 2021 Oct; 8(20):e2101793. PubMed ID: 34390211 [TBL] [Abstract][Full Text] [Related]
18. Formation of Triboelectric Series via Atomic-Level Surface Functionalization for Triboelectric Energy Harvesting. Shin SH; Bae YE; Moon HK; Kim J; Choi SH; Kim Y; Yoon HJ; Lee MH; Nah J ACS Nano; 2017 Jun; 11(6):6131-6138. PubMed ID: 28558185 [TBL] [Abstract][Full Text] [Related]
19. Effect of Photo-Excitation on Contact Electrification at Liquid-Solid Interface. Tao X; Nie J; Li S; Shi Y; Lin S; Chen X; Wang ZL ACS Nano; 2021 Jun; 15(6):10609-10617. PubMed ID: 34101417 [TBL] [Abstract][Full Text] [Related]
20. Understanding Contact Electrification at Water/Polymer Interface. Nan Y; Shao J; Willatzen M; Wang ZL Research (Wash D C); 2022; 2022():9861463. PubMed ID: 35265850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]