These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

632 related articles for article (PubMed ID: 32508018)

  • 1. Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints.
    Hargadon KM
    Clin Transl Med; 2020 Jan; 10(1):374-411. PubMed ID: 32508018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies to Improve the Efficacy of Dendritic Cell-Based Immunotherapy for Melanoma.
    Hargadon KM
    Front Immunol; 2017; 8():1594. PubMed ID: 29209327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic checkpoints and novel approaches for immunotherapy against cancer.
    Li Y; Tang J; Jiang J; Chen Z
    Int J Cancer; 2022 Jan; 150(2):195-207. PubMed ID: 34460110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance to Checkpoint Inhibition in Cancer Immunotherapy.
    Barrueto L; Caminero F; Cash L; Makris C; Lamichhane P; Deshmukh RR
    Transl Oncol; 2020 Mar; 13(3):100738. PubMed ID: 32114384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma.
    Sadozai H; Gruber T; Hunger RE; Schenk M
    Front Immunol; 2017; 8():1617. PubMed ID: 29276510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
    Ohshio Y; Teramoto K; Hanaoka J; Tezuka N; Itoh Y; Asai T; Daigo Y; Ogasawara K
    Cancer Sci; 2015 Feb; 106(2):134-42. PubMed ID: 25483888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells.
    Yong SB; Chung JY; Song Y; Kim J; Ra S; Kim YH
    Biomaterials; 2019 Oct; 219():119401. PubMed ID: 31398571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the tumor microenvironment with an oncolytic adenovirus for effective T-cell therapy and checkpoint inhibition.
    Santos JM; Havunen R; Hemminki A
    Methods Enzymol; 2020; 635():205-230. PubMed ID: 32122546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting immune checkpoints in hematological malignancies.
    Salik B; Smyth MJ; Nakamura K
    J Hematol Oncol; 2020 Aug; 13(1):111. PubMed ID: 32787882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunotherapy as a treatment for biliary tract cancers: A review of approaches with an eye to the future.
    Blair AB; Murphy A
    Curr Probl Cancer; 2018; 42(1):49-58. PubMed ID: 29501212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds.
    Asija S; Chatterjee A; Yadav S; Chekuri G; Karulkar A; Jaiswal AK; Goda JS; Purwar R
    Int Rev Immunol; 2022; 41(6):582-605. PubMed ID: 35938932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-Immune-Engineering Approaches to Advance Cancer Immunotherapy: Lessons from Ultra-pH-Sensitive Nanoparticles.
    Li S; Bennett ZT; Sumer BD; Gao J
    Acc Chem Res; 2020 Nov; 53(11):2546-2557. PubMed ID: 33063517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD8
    Farhood B; Najafi M; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8509-8521. PubMed ID: 30520029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines.
    Butt AQ; Mills KH
    Oncogene; 2014 Sep; 33(38):4623-31. PubMed ID: 24141774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T-cell programming in pancreatic adenocarcinoma: a review.
    Seo YD; Pillarisetty VG
    Cancer Gene Ther; 2017 Mar; 24(3):106-113. PubMed ID: 27910859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy.
    Mercogliano MF; Bruni S; Mauro F; Elizalde PV; Schillaci R
    Cancers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors.
    Hargadon KM; Johnson CE; Williams CJ
    Int Immunopharmacol; 2018 Sep; 62():29-39. PubMed ID: 29990692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.