BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32508206)

  • 1. Identification of the NaCl-responsive metabolites in
    Lamine M; Gargouri M; Mliki A
    Plant Signal Behav; 2020 Aug; 15(8):1777376. PubMed ID: 32508206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings.
    Kostopoulou Z; Therios I; Roumeliotis E; Kanellis AK; Molassiotis A
    Plant Physiol Biochem; 2015 Jan; 86():155-165. PubMed ID: 25500452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolically speaking: Possible reasons behind the tolerance of 'Sugar Belle' mandarin hybrid to huanglongbing.
    Killiny N; Valim MF; Jones SE; Omar AA; Hijaz F; Gmitter FG; Grosser JW
    Plant Physiol Biochem; 2017 Jul; 116():36-47. PubMed ID: 28501026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress.
    Tanou G; Filippou P; Belghazi M; Job D; Diamantidis G; Fotopoulos V; Molassiotis A
    Plant J; 2012 Nov; 72(4):585-99. PubMed ID: 22780834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resveratrol and its combination with α-tocopherol mediate salt adaptation in citrus seedlings.
    Kostopoulou Z; Therios I; Molassiotis A
    Plant Physiol Biochem; 2014 May; 78():1-9. PubMed ID: 24602773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytotoxic compounds from roots of Centaurea diffusa Lam.
    Quintana N; El Kassis EG; Stermitz FR; Vivanco JM
    Plant Signal Behav; 2009 Jan; 4(1):9-14. PubMed ID: 19568334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Drought and Salinity on Volatile Organic Compounds and Other Secondary Metabolites of Citrus aurantium Leaves.
    Eirini S; Paschalina C; Loannis T; Kortessa DT
    Nat Prod Commun; 2017 Feb; 12(2):193-196. PubMed ID: 30428209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative GC/MS analysis of essential oils extracted by 3 methods from the bud of Citrus aurantium L. var. amara Engl.
    Jiang MH; Yang L; Zhu L; Piao JH; Jiang JG
    J Food Sci; 2011; 76(9):C1219-25. PubMed ID: 22416680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea.
    Lee SJ; Jeong EM; Ki AY; Oh KS; Kwon J; Jeong JH; Chung NJ
    J Plant Physiol; 2016 Nov; 206():133-142. PubMed ID: 27770750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of root volatiles and functional characterization of a root-specific germacrene A synthase in Artemisia pallens.
    Kiran NR; Narayanan AK; Mohapatra S; Gupta P; Nagegowda DA
    Planta; 2024 Feb; 259(3):58. PubMed ID: 38308700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomic profiling of the halophyte Prosopis strombulifera shows sodium salt- specific response.
    Llanes A; Arbona V; Gómez-Cadenas A; Luna V
    Plant Physiol Biochem; 2016 Nov; 108():145-157. PubMed ID: 27428369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of the volatile profile and artifact formation in Daidai (Citrus aurantium) cold-pressed peel oil on storage.
    Njoroge SM; Ukeda H; Sawamura M
    J Agric Food Chem; 2003 Jul; 51(14):4029-35. PubMed ID: 12822942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential tolerance of 3 self-rooted Citrus limon cultivars to NaCl stress.
    Tsabarducas V; Chatzistathis T; Therios I; Koukourikou-Petridou M; Tananaki C
    Plant Physiol Biochem; 2015 Dec; 97():196-206. PubMed ID: 26476793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Composition and Antioxidant Activity of Essential Oils from
    Franco CJP; Ferreira OO; Antônio Barbosa de Moraes Â; Varela ELP; Nascimento LDD; Percário S; de Oliveira MS; Andrade EHA
    Molecules; 2021 May; 26(11):. PubMed ID: 34072598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf blade structure of Verbesina macrophylla (Cass.) F. S. Blake (Asteraceae): ontogeny, duct secretion mechanism and essential oil composition.
    Bezerra LDA; Mangabeira PAO; de Oliveira RA; Costa LCDB; Da Cunha M
    Plant Biol (Stuttg); 2018 May; 20(3):433-443. PubMed ID: 29394523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical characterization of Goniothalamus macrophyllus and Goniothalamus malayanus leaves' essential oils.
    Shakri NM; Salleh WMNHW; Khamis S; Mohamad Ali NA
    Z Naturforsch C J Biosci; 2020 Nov; 75(11-12):485-488. PubMed ID: 32966236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical composition of the essential oil of Cachrys libanotis from Algeria.
    Bouderdara N; Elomri A; Djarri L; Medjroubi K; Seguin E; Vérité P
    Nat Prod Commun; 2011 Jan; 6(1):115-7. PubMed ID: 21366059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions.
    Bourgou S; Bettaieb I; Saidani M; Marzouk B
    J Agric Food Chem; 2010 Dec; 58(23):12399-406. PubMed ID: 21049998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alleviation of salt stress in lemongrass by salicylic acid.
    Idrees M; Naeem M; Khan MN; Aftab T; Khan MM; Moinuddin
    Protoplasma; 2012 Jul; 249(3):709-20. PubMed ID: 21882051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root volatiles in plant-plant interactions I: High root sesquiterpene release is associated with increased germination and growth of plant neighbours.
    Gfeller V; Huber M; Förster C; Huang W; Köllner TG; Erb M
    Plant Cell Environ; 2019 Jun; 42(6):1950-1963. PubMed ID: 30737807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.