These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32508786)
1. The Kinase USK1 Regulates Cellulase Gene Expression and Secondary Metabolite Biosynthesis in Beier S; Hinterdobler W; Monroy AA; Bazafkan H; Schmoll M Front Microbiol; 2020; 11():974. PubMed ID: 32508786 [TBL] [Abstract][Full Text] [Related]
2. The role of PKAc1 in gene regulation and trichodimerol production in Hinterdobler W; Schuster A; Tisch D; Özkan E; Bazafkan H; Schinnerl J; Brecker L; Böhmdorfer S; Schmoll M Fungal Biol Biotechnol; 2019; 6():12. PubMed ID: 31528353 [TBL] [Abstract][Full Text] [Related]
3. YPR2 is a regulator of light modulated carbon and secondary metabolism in Trichoderma reesei. Hitzenhammer E; Büschl C; Sulyok M; Schuhmacher R; Kluger B; Wischnitzki E; Schmoll M BMC Genomics; 2019 Mar; 20(1):211. PubMed ID: 30866811 [TBL] [Abstract][Full Text] [Related]
4. A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei. Monroy AA; Stappler E; Schuster A; Sulyok M; Schmoll M PLoS One; 2017; 12(8):e0182530. PubMed ID: 28809958 [TBL] [Abstract][Full Text] [Related]
5. The G-protein Coupled Receptor GPR8 Regulates Secondary Metabolism in Hinterdobler W; Beier S; Monroy AA; Berger H; Dattenböck C; Schmoll M Front Bioeng Biotechnol; 2020; 8():558996. PubMed ID: 33251193 [TBL] [Abstract][Full Text] [Related]
6. Roles of PKAc1 and CRE1 in cellulose degradation, conidiation, and yellow pigment synthesis in Trichoderma reesei QM6a. Li N; Chen Y; Shen Y; Wang W Biotechnol Lett; 2022 Dec; 44(12):1465-1475. PubMed ID: 36269496 [TBL] [Abstract][Full Text] [Related]
7. Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei. Cao Y; Yang R; Zheng F; Meng X; Zhang W; Liu W mBio; 2021 Feb; 13(1):e0345621. PubMed ID: 35130719 [TBL] [Abstract][Full Text] [Related]
8. CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. Beier S; Hinterdobler W; Bazafkan H; Schillinger L; Schmoll M Fungal Genet Biol; 2020 Mar; 136():103315. PubMed ID: 31816399 [TBL] [Abstract][Full Text] [Related]
9. Cellulase formation by species of Trichoderma sect. Longibrachiatum and of Hypocrea spp. with anamorphs referable to Trichoderma sect. Longibrachiatum. Kubicek CP; Bölzlbauer UM; Kovacs W; Mach RL; Kuhls K; Lieckfeldt E; Börner T; Samuels GJ Fungal Genet Biol; 1996 Jun; 20(2):105-14. PubMed ID: 8810515 [TBL] [Abstract][Full Text] [Related]
10. Defining the genome-wide role of CRE1 during carbon catabolite repression in Trichoderma reesei using RNA-Seq analysis. Antoniêto AC; dos Santos Castro L; Silva-Rocha R; Persinoti GF; Silva RN Fungal Genet Biol; 2014 Dec; 73():93-103. PubMed ID: 25459535 [TBL] [Abstract][Full Text] [Related]
11. Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Schuster A; Tisch D; Seidl-Seiboth V; Kubicek CP; Schmoll M Appl Environ Microbiol; 2012 Apr; 78(7):2168-78. PubMed ID: 22286997 [TBL] [Abstract][Full Text] [Related]
12. Regulation of plant cell wall degradation by light in Schmoll M Fungal Biol Biotechnol; 2018; 5():10. PubMed ID: 29713489 [No Abstract] [Full Text] [Related]
13. MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei. Schalamun M; Beier S; Hinterdobler W; Wanko N; Schinnerl J; Brecker L; Engl DE; Schmoll M Sci Rep; 2023 Feb; 13(1):1912. PubMed ID: 36732590 [TBL] [Abstract][Full Text] [Related]
14. RGS4 impacts carbohydrate and siderophore metabolism in Trichoderma reesei. Schalamun M; Molin EM; Schmoll M BMC Genomics; 2023 Jul; 24(1):372. PubMed ID: 37400774 [TBL] [Abstract][Full Text] [Related]
15. Targets of light signalling in Trichoderma reesei. Tisch D; Schmoll M BMC Genomics; 2013 Sep; 14():657. PubMed ID: 24070552 [TBL] [Abstract][Full Text] [Related]
16. Mating type-dependent partner sensing as mediated by VEL1 in Trichoderma reesei. Bazafkan H; Dattenböck C; Böhmdorfer S; Tisch D; Stappler E; Schmoll M Mol Microbiol; 2015 Jun; 96(6):1103-18. PubMed ID: 25757597 [TBL] [Abstract][Full Text] [Related]
17. Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing. Stappler E; Dattenböck C; Tisch D; Schmoll M mSphere; 2017; 2(3):. PubMed ID: 28497120 [TBL] [Abstract][Full Text] [Related]
18. Constitutive hyperproduction of sorbicillinoids in Li C; Lin F; Sun W; Yuan S; Zhou Z; Wu FG; Chen Z Biotechnol Biofuels; 2018; 11():291. PubMed ID: 30386428 [TBL] [Abstract][Full Text] [Related]
19. Precision Engineering of the Transcription Factor Cre1 in Han L; Tan Y; Ma W; Niu K; Hou S; Guo W; Liu Y; Fang X Front Bioeng Biotechnol; 2020; 8():852. PubMed ID: 32850722 [TBL] [Abstract][Full Text] [Related]
20. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]