These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32508792)

  • 1. Describing the Individual Spore Variability and the Parameter Uncertainty in Bacterial Survival Kinetics Model by Using Second-Order Monte Carlo Simulation.
    Abe H; Koyama K; Takeoka K; Doto S; Koseki S
    Front Microbiol; 2020; 11():985. PubMed ID: 32508792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic modeling of variability in survival behavior of Bacillus simplex spore population during isothermal inactivation at the single cell level using a Monte Carlo simulation.
    Abe H; Koyama K; Kawamura S; Koseki S
    Food Microbiol; 2019 Sep; 82():436-444. PubMed ID: 31027803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The two-dimensional Monte Carlo: a new methodologic paradigm for dose reconstruction for epidemiological studies.
    Simon SL; Hoffman FO; Hofer E
    Radiat Res; 2015 Jan; 183(1):27-41. PubMed ID: 25496314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty in thermal process calculations due to variability in first-order and Weibull kinetic parameters.
    Halder A; Datta AK; Geedipalli SS
    J Food Sci; 2007 May; 72(4):E155-67. PubMed ID: 17995767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic simulation for death probability of bacterial population considering variability in individual cell inactivation time and initial number of cells.
    Koyama K; Abe H; Kawamura S; Koseki S
    Int J Food Microbiol; 2019 Feb; 290():125-131. PubMed ID: 30326383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinactivation: Software for modelling dynamic microbial inactivation.
    Garre A; Fernández PS; Lindqvist R; Egea JA
    Food Res Int; 2017 Mar; 93():66-74. PubMed ID: 28290281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optimization algorithm for estimation of microbial survival parameters during thermal processing.
    Chen G; Campanella OH
    Int J Food Microbiol; 2012 Mar; 154(1-2):52-8. PubMed ID: 22244193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of input data variability on estimations of the equivalent constant temperature time for microbial inactivation by HTST and retort thermal processing.
    Salgado D; Torres JA; Welti-Chanes J; Velazquez G
    J Food Sci; 2011 Aug; 76(6):E495-502. PubMed ID: 21729079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Added value of experts' knowledge to improve a quantitative microbial exposure assessment model--Application to aseptic-UHT food products.
    Pujol L; Johnson NB; Magras C; Albert I; Membré JM
    Int J Food Microbiol; 2015 Oct; 211():6-17. PubMed ID: 26143288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Listeria monocytogenes survival during thermoultrasonic treatments in non-isothermal conditions: Effect of ultrasound on temperature and survival profiles.
    Franco-Vega A; Ramírez-Corona N; López-Malo A; Palou E
    Food Microbiol; 2015 Dec; 52():124-30. PubMed ID: 26338125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the heat resistance parameters of bacterial spores from their survival ratios at the end of UHT and other heat treatments.
    Peleg M; Normand MD; Corradini MG; Van Asselt AJ; De Jong P; Ter Steeg PF
    Crit Rev Food Sci Nutr; 2008 Aug; 48(7):634-48. PubMed ID: 18663615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Generalized Linear Model for Simulating Bacterial Inactivation/Growth Considering Variability and Uncertainty.
    Hiura S; Abe H; Koyama K; Koseki S
    Front Microbiol; 2021; 12():674364. PubMed ID: 34248886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alicyclobacillus acidoterrestris spores as a target for Cupuaçu (Theobroma grandiflorum) nectar thermal processing: kinetic parameters and experimental methods.
    Vieira MC; Teixeira AA; Silva FM; Gaspar N; Silva CL
    Int J Food Microbiol; 2002 Jul; 77(1-2):71-81. PubMed ID: 12076040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of Clostridium perfringens in cooked chicken during cooling: One-step dynamic inverse analysis, sensitivity analysis, and Markov Chain Monte Carlo simulation.
    Huang L; Li C
    Food Microbiol; 2020 Feb; 85():103285. PubMed ID: 31500704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty Evaluation of Weibull Estimators through Monte Carlo Simulation: Applications for Crack Initiation Testing.
    Park JP; Bahn CB
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ; Pintar KD; Fazil AM; Topp E
    Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to account for uncertainties in exposure assessment in studies of environmental exposures.
    Wu Y; Hoffman FO; Apostoaei AI; Kwon D; Thomas BA; Glass R; Zablotska LB
    Environ Health; 2019 Apr; 18(1):31. PubMed ID: 30961632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells.
    van Boekel MA
    Int J Food Microbiol; 2002 Mar; 74(1-2):139-59. PubMed ID: 11930951
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.