BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1044 related articles for article (PubMed ID: 32508809)

  • 1. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors.
    Hou A; Hou K; Huang Q; Lei Y; Chen W
    Front Immunol; 2020; 11():783. PubMed ID: 32508809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting myeloid-derived suppressive cells in the tumor microenvironment to enhance the efficacy of cancer immunotherapy.
    Huo S; Liu L; Li Q; Wang J
    Discov Med; 2020; 30(161):119-128. PubMed ID: 33593480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy.
    Wu Y; Yi M; Niu M; Mei Q; Wu K
    Mol Cancer; 2022 Sep; 21(1):184. PubMed ID: 36163047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer.
    Law AMK; Valdes-Mora F; Gallego-Ortega D
    Cells; 2020 Feb; 9(3):. PubMed ID: 32121014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Liu W; Adeshakin FO; Afolabi LO; Zhang M; Zhang G; Wang L; Li Z; Lin L; Cao Q; Yan D; Wan X
    Cell Immunol; 2021 Apr; 362():104286. PubMed ID: 33524739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PD-1 Signaling Promotes Tumor-Infiltrating Myeloid-Derived Suppressor Cells and Gastric Tumorigenesis in Mice.
    Kim W; Chu TH; Nienhüser H; Jiang Z; Del Portillo A; Remotti HE; White RA; Hayakawa Y; Tomita H; Fox JG; Drake CG; Wang TC
    Gastroenterology; 2021 Feb; 160(3):781-796. PubMed ID: 33129844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy.
    Chesney JA; Mitchell RA; Yaddanapudi K
    J Leukoc Biol; 2017 Sep; 102(3):727-740. PubMed ID: 28546500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment.
    Nakamura K; Smyth MJ
    Cell Mol Immunol; 2020 Jan; 17(1):1-12. PubMed ID: 31611651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion.
    De Cicco P; Ercolano G; Ianaro A
    Front Immunol; 2020; 11():1680. PubMed ID: 32849585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockade of myeloid-derived suppressor cell function by valproic acid enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Yan D; Zhang M; Wang L; Adeshakin FO; Liu W; Wan X
    Biochem Biophys Res Commun; 2020 Feb; 522(3):604-611. PubMed ID: 31785814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic Blood Immune Cell Populations as Biomarkers for the Outcome of Immune Checkpoint Inhibitor Therapies.
    Hernandez C; Arasanz H; Chocarro L; Bocanegra A; Zuazo M; Fernandez-Hinojal G; Blanco E; Vera R; Escors D; Kochan G
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting myeloid-derived suppressor cells for cancer immunotherapy.
    Liu Y; Wei G; Cheng WA; Dong Z; Sun H; Lee VY; Cha SC; Smith DL; Kwak LW; Qin H
    Cancer Immunol Immunother; 2018 Aug; 67(8):1181-1195. PubMed ID: 29855694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-angiogenic Agents in Combination With Immune Checkpoint Inhibitors: A Promising Strategy for Cancer Treatment.
    Song Y; Fu Y; Xie Q; Zhu B; Wang J; Zhang B
    Front Immunol; 2020; 11():1956. PubMed ID: 32983126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective combinatorial immunotherapy for castration-resistant prostate cancer.
    Lu X; Horner JW; Paul E; Shang X; Troncoso P; Deng P; Jiang S; Chang Q; Spring DJ; Sharma P; Zebala JA; Maeda DY; Wang YA; DePinho RA
    Nature; 2017 Mar; 543(7647):728-732. PubMed ID: 28321130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of PD-1/PD-L1 axis in myeloid-derived suppressor cells by anti-cancer treatments.
    Jachetti E; Sangaletti S; Chiodoni C; Ferrara R; Colombo MP
    Cell Immunol; 2021 Apr; 362():104301. PubMed ID: 33588246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment.
    Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P
    Front Immunol; 2020; 11():585214. PubMed ID: 33613512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloid-derived suppressor cells are essential partners for immune checkpoint inhibitors in the treatment of cisplatin-resistant bladder cancer.
    Takeyama Y; Kato M; Tamada S; Azuma Y; Shimizu Y; Iguchi T; Yamasaki T; Gi M; Wanibuchi H; Nakatani T
    Cancer Lett; 2020 Jun; 479():89-99. PubMed ID: 32200039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment.
    Carnevalli LS; Ghadially H; Barry ST
    Front Immunol; 2021; 12():633685. PubMed ID: 33953710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.