These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32508867)

  • 1. The Improvement of CRISPR-Cas9 System With Ubiquitin-Associated Domain Fusion for Efficient Plant Genome Editing.
    Zheng X; Qi C; Yang L; Quan Q; Liu B; Zhong Z; Tang X; Fan T; Zhou J; Zhang Y
    Front Plant Sci; 2020; 11():621. PubMed ID: 32508867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing.
    Tang X; Ren Q; Yang L; Bao Y; Zhong Z; He Y; Liu S; Qi C; Liu B; Wang Y; Sretenovic S; Zhang Y; Zheng X; Zhang T; Qi Y; Zhang Y
    Plant Biotechnol J; 2019 Jul; 17(7):1431-1445. PubMed ID: 30582653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention.
    Zhang Q; Xing HL; Wang ZP; Zhang HY; Yang F; Wang XC; Chen QJ
    Plant Mol Biol; 2018 Mar; 96(4-5):445-456. PubMed ID: 29476306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing.
    Ren Q; Zhong Z; Wang Y; You Q; Li Q; Yuan M; He Y; Qi C; Tang X; Zheng X; Zhang T; Qi Y; Zhang Y
    Front Plant Sci; 2019; 10():1173. PubMed ID: 31616455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two efficient CRISPR/Cas9 systems for gene editing in soybean.
    Carrijo J; Illa-Berenguer E; LaFayette P; Torres N; Aragão FJL; Parrott W; Vianna GR
    Transgenic Res; 2021 Jun; 30(3):239-249. PubMed ID: 33797713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice: a model genome editing system for oil palm.
    Bahariah B; Masani MYA; Rasid OA; Parveez GKA
    J Genet Eng Biotechnol; 2021 Jun; 19(1):86. PubMed ID: 34115267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice].
    Xin GW; Hu XX; Wang KJ; Wang XC
    Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement.
    Guo Y; Zhao G; Gao X; Zhang L; Zhang Y; Cai X; Yuan X; Guo X
    Planta; 2023 Jul; 258(2):36. PubMed ID: 37395789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAM-less plant genome editing using a CRISPR-SpRY toolbox.
    Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y
    Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
    Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z
    J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency Optimization of CRISPR/Cas9-Mediated Targeted Mutagenesis in Grape.
    Ren F; Ren C; Zhang Z; Duan W; Lecourieux D; Li S; Liang Z
    Front Plant Sci; 2019; 10():612. PubMed ID: 31156675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice.
    Xu W; Song W; Yang Y; Wu Y; Lv X; Yuan S; Liu Y; Yang J
    BMC Plant Biol; 2019 Nov; 19(1):511. PubMed ID: 31752697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intron-Based Single Transcript Unit CRISPR Systems for Plant Genome Editing.
    Zhong Z; Liu S; Liu X; Liu B; Tang X; Ren Q; Zhou J; Zheng X; Qi Y; Zhang Y
    Rice (N Y); 2020 Feb; 13(1):8. PubMed ID: 32016614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 Technology and Its Utility for Crop Improvement.
    Liu H; Chen W; Li Y; Sun L; Chai Y; Chen H; Nie H; Huang C
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.