These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32508979)

  • 1. Evolution through segmental duplications and losses: a Super-Reconciliation approach.
    Delabre M; El-Mabrouk N; Huber KT; Lafond M; Moulton V; Noutahi E; Castellanos MS
    Algorithms Mol Biol; 2020; 15():12. PubMed ID: 32508979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconciling multiple genes trees via segmental duplications and losses.
    Dondi R; Lafond M; Scornavacca C
    Algorithms Mol Biol; 2019; 14():7. PubMed ID: 30930955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene tree correction for reconciliation and species tree inference.
    Swenson KM; Doroftei A; El-Mabrouk N
    Algorithms Mol Biol; 2012 Nov; 7(1):31. PubMed ID: 23167951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the computational complexity of the maximum parsimony reconciliation problem in the duplication-loss-coalescence model.
    Bork D; Cheng R; Wang J; Sung J; Libeskind-Hadas R
    Algorithms Mol Biol; 2017; 12():6. PubMed ID: 28316640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing a SuperGeneTree minimizing reconciliation.
    Lafond M; Ouangraoua A; El-Mabrouk N
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S4. PubMed ID: 26451911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees.
    Wu YC; Rasmussen MD; Bansal MS; Kellis M
    Genome Res; 2014 Mar; 24(3):475-86. PubMed ID: 24310000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast algorithm for the reconciliation of gene trees and LGT networks.
    Scornavacca C; Mayol JCP; Cardona G
    J Theor Biol; 2017 Apr; 418():129-137. PubMed ID: 28111320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms: simultaneous error-correction and rooting for gene tree reconciliation and the gene duplication problem.
    Górecki P; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S14. PubMed ID: 22759419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
    Kordi M; Bansal MS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1077-1090. PubMed ID: 28622673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene tree species tree reconciliation with gene conversion.
    Hasić D; Tannier E
    J Math Biol; 2019 May; 78(6):1981-2014. PubMed ID: 30767052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Support measures to estimate the reliability of evolutionary events predicted by reconciliation methods.
    Nguyen TH; Ranwez V; Berry V; Scornavacca C
    PLoS One; 2013; 8(10):e73667. PubMed ID: 24124449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient error correction algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep coalescence.
    Chaudhary R; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S11. PubMed ID: 22759416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring gene duplications, transfers and losses can be done in a discrete framework.
    Ranwez V; Scornavacca C; Doyon JP; Berry V
    J Math Biol; 2016 Jun; 72(7):1811-44. PubMed ID: 26337177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing protein and gene phylogenies using reconciliation and soft-clustering.
    Kuitche E; Lafond M; Ouangraoua A
    J Bioinform Comput Biol; 2017 Dec; 15(6):1740007. PubMed ID: 29169277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss.
    Bansal MS; Alm EJ; Kellis M
    Bioinformatics; 2012 Jun; 28(12):i283-91. PubMed ID: 22689773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic Gene Transfer to Gene Duplication Ratios Identify Different Roots in the Bacterial Phylogeny Using a Tree Reconciliation Method.
    Bremer N; Knopp M; Martin WF; Tria FDK
    Life (Basel); 2022 Jul; 12(7):. PubMed ID: 35888084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of Ancient Whole-Genome Duplications and the Evolution of Gene Duplication and Loss Rates.
    Zwaenepoel A; Van de Peer Y
    Mol Biol Evol; 2019 Jul; 36(7):1384-1404. PubMed ID: 31004147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the complexity of non-binary tree reconciliation with endosymbiotic gene transfer.
    Gascon M; El-Mabrouk N
    Algorithms Mol Biol; 2023 Jul; 18(1):9. PubMed ID: 37518001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring duplication episodes from unrooted gene trees.
    Paszek J; Górecki P
    BMC Genomics; 2018 May; 19(Suppl 5):288. PubMed ID: 29745844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.