These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
561 related articles for article (PubMed ID: 32509258)
1. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Cavezzi A; Troiani E; Corrao S Clin Pract; 2020 May; 10(2):1271. PubMed ID: 32509258 [TBL] [Abstract][Full Text] [Related]
2. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. Cavezzi A; Menicagli R; Troiani E; Corrao S F1000Res; 2022; 11():102. PubMed ID: 35340277 [No Abstract] [Full Text] [Related]
3. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. Naidu SAG; Clemens RA; Naidu AS J Diet Suppl; 2023; 20(2):312-371. PubMed ID: 35603834 [TBL] [Abstract][Full Text] [Related]
4. SARS-CoV-2 Infects Red Blood Cell Progenitors and Dysregulates Hemoglobin and Iron Metabolism. Kronstein-Wiedemann R; Stadtmüller M; Traikov S; Georgi M; Teichert M; Yosef H; Wallenborn J; Karl A; Schütze K; Wagner M; El-Armouche A; Tonn T Stem Cell Rev Rep; 2022 Jun; 18(5):1809-1821. PubMed ID: 35181867 [TBL] [Abstract][Full Text] [Related]
5. Pathogenesis-directed therapy of 2019 novel coronavirus disease. Stratton CW; Tang YW; Lu H J Med Virol; 2021 Mar; 93(3):1320-1342. PubMed ID: 33073355 [TBL] [Abstract][Full Text] [Related]
6. Iron dysregulation in COVID-19 and reciprocal evolution of SARS-CoV-2: Natura nihil frustra facit. Gupta Y; Maciorowski D; Medernach B; Becker DP; Durvasula R; Libertin CR; Kempaiah P J Cell Biochem; 2022 Mar; 123(3):601-619. PubMed ID: 34997606 [TBL] [Abstract][Full Text] [Related]
7. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms. Enculescu M; Metzendorf C; Sparla R; Hahnel M; Bode J; Muckenthaler MU; Legewie S PLoS Comput Biol; 2017 Jan; 13(1):e1005322. PubMed ID: 28068331 [TBL] [Abstract][Full Text] [Related]
8. Differential Redox State and Iron Regulation in Chronic Obstructive Pulmonary Disease, Acute Respiratory Distress Syndrome and Coronavirus Disease 2019. Duca L; Ottolenghi S; Coppola S; Rinaldo R; Dei Cas M; Rubino FM; Paroni R; Samaja M; Chiumello DA; Motta I Antioxidants (Basel); 2021 Sep; 10(9):. PubMed ID: 34573092 [TBL] [Abstract][Full Text] [Related]
9. Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis. Taneri PE; Gómez-Ochoa SA; Llanaj E; Raguindin PF; Rojas LZ; Roa-Díaz ZM; Salvador D; Groothof D; Minder B; Kopp-Heim D; Hautz WE; Eisenga MF; Franco OH; Glisic M; Muka T Eur J Epidemiol; 2020 Aug; 35(8):763-773. PubMed ID: 32816244 [TBL] [Abstract][Full Text] [Related]
10. COULD COVID-19 BE A HEMOGLOBINOPATHY? Shakoori TA; Hafeez MM; Malik A Acta Clin Croat; 2020 Dec; 59(4):740-744. PubMed ID: 34285445 [TBL] [Abstract][Full Text] [Related]
11. Attenuation of ferroptosis as a potential therapeutic target for neuropsychiatric manifestations of post-COVID syndrome. Sousa RAL; Yehia A; Abulseoud OA Front Neurosci; 2023; 17():1237153. PubMed ID: 37554293 [TBL] [Abstract][Full Text] [Related]
12. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Habib HM; Ibrahim S; Zaim A; Ibrahim WH Biomed Pharmacother; 2021 Apr; 136():111228. PubMed ID: 33454595 [TBL] [Abstract][Full Text] [Related]
13. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Saleh J; Peyssonnaux C; Singh KK; Edeas M Mitochondrion; 2020 Sep; 54():1-7. PubMed ID: 32574708 [TBL] [Abstract][Full Text] [Related]
14. [Molecular mechanisms of iron homeostasis]. Beaumont C Med Sci (Paris); 2004 Jan; 20(1):68-72. PubMed ID: 14770366 [TBL] [Abstract][Full Text] [Related]
15. Ameliorating effects of probiotics on alterations in iron homeostasis and inflammation in COVID-19. El-Sayed EM; Ibrahim KS Mol Biol Rep; 2022 Jun; 49(6):5153-5163. PubMed ID: 35169998 [TBL] [Abstract][Full Text] [Related]
16. Hyperferritinemia, Low Circulating Iron and Elevated Hepcidin May Negatively Impact Outcome in COVID-19 Patients: A Pilot Study. Szabo R; Petrisor C; Bodolea C; Simon R; Maries I; Tranca S; Mocan T Antioxidants (Basel); 2022 Jul; 11(7):. PubMed ID: 35883855 [TBL] [Abstract][Full Text] [Related]
17. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Koskenkorva-Frank TS; Weiss G; Koppenol WH; Burckhardt S Free Radic Biol Med; 2013 Dec; 65():1174-1194. PubMed ID: 24036104 [TBL] [Abstract][Full Text] [Related]
18. GBT1118, a compound that increases the oxygen affinity of hemoglobin, improves survival in murine hypoxic acute lung injury. Putz ND; Shaver CM; Dufu K; Li CM; Xu Q; Hutchaleelaha A; Lehrer-Graiwer J; Majka SM; Ware LB; Bastarache JA J Appl Physiol (1985); 2018 Apr; 124(4):899-905. PubMed ID: 29357510 [TBL] [Abstract][Full Text] [Related]
19. Prospects for the use of regulators of oxidative stress in the comprehensive treatment of the novel Coronavirus Disease 2019 (COVID-19) and its complications. Mironova GD; Belosludtseva NV; Ananyan MA Eur Rev Med Pharmacol Sci; 2020 Aug; 24(16):8585-8591. PubMed ID: 32894566 [TBL] [Abstract][Full Text] [Related]
20. Testing the efficacy and safety of BIO101, for the prevention of respiratory deterioration, in patients with COVID-19 pneumonia (COVA study): a structured summary of a study protocol for a randomised controlled trial. Dioh W; Chabane M; Tourette C; Azbekyan A; Morelot-Panzini C; Hajjar LA; Lins M; Nair GB; Whitehouse T; Mariani J; Latil M; Camelo S; Lafont R; Dilda PJ; Veillet S; Agus S Trials; 2021 Jan; 22(1):42. PubMed ID: 33430924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]