These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 32509406)
1. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon. Ouabo RE; Sangodoyin AY; Ogundiran MB J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406 [TBL] [Abstract][Full Text] [Related]
2. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Qiao P; Lei M; Yang S; Yang J; Guo G; Zhou X Environ Sci Pollut Res Int; 2018 Jun; 25(16):15597-15608. PubMed ID: 29572743 [TBL] [Abstract][Full Text] [Related]
4. [Spatial Interpolation Methods and Pollution Assessment of Heavy Metals of Soil in Typical Areas]. Ma HH; Yu T; Yang ZF; Hou QY; Zeng QL; Wang R Huan Jing Ke Xue; 2018 Oct; 39(10):4684-4693. PubMed ID: 30229617 [TBL] [Abstract][Full Text] [Related]
5. Screening and optimization of interpolation methods for mapping soil-borne polychlorinated biphenyls. Liu A; Qu C; Zhang J; Sun W; Shi C; Lima A; De Vivo B; Huang H; Palmisano M; Guarino A; Qi S; Albanese S Sci Total Environ; 2024 Feb; 913():169498. PubMed ID: 38154632 [TBL] [Abstract][Full Text] [Related]
6. Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico. Zarco-Perello S; Simões N PeerJ; 2017; 5():e4078. PubMed ID: 29204321 [TBL] [Abstract][Full Text] [Related]
7. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content]. Hu KL; Li BG; Lu YZ; Zhang FR Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270 [TBL] [Abstract][Full Text] [Related]
8. Optimizing spatial interpolation method and sampling number for predicting cadmium distribution in the largest shallow lake of North China. Wen L; Zhang L; Bai J; Wang Y; Wei Z; Liu H Chemosphere; 2022 Dec; 309(Pt 2):136789. PubMed ID: 36223825 [TBL] [Abstract][Full Text] [Related]
9. Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China. Qu L; Xiao H; Zheng N; Zhang Z; Xu Y Environ Sci Pollut Res Int; 2017 Jan; 24(3):2578-2588. PubMed ID: 27826827 [TBL] [Abstract][Full Text] [Related]
10. An assessment of air pollutant exposure methods in Mexico City, Mexico. Rivera-González LO; Zhang Z; Sánchez BN; Zhang K; Brown DG; Rojas-Bracho L; Osornio-Vargas A; Vadillo-Ortega F; O'Neill MS J Air Waste Manag Assoc; 2015 May; 65(5):581-91. PubMed ID: 25947316 [TBL] [Abstract][Full Text] [Related]
11. [Comparison on the methods for spatial interpolation of the annual average precipitation in the Loess Plateau region]. Yu Y; Wei W; Chen LD; Yang L; Zhang HD Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):999-1006. PubMed ID: 26259439 [TBL] [Abstract][Full Text] [Related]
12. A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model. Yin G; Chen X; Zhu H; Chen Z; Su C; He Z; Qiu J; Wang T Sci Total Environ; 2022 Jun; 825():153948. PubMed ID: 35219652 [TBL] [Abstract][Full Text] [Related]
13. Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method. Qiao P; Yang S; Wei W; Li P; Cheng Y; Liang S; Lei M; Chen T Environ Geochem Health; 2021 Jan; 43(1):23-36. PubMed ID: 32696201 [TBL] [Abstract][Full Text] [Related]
14. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Mirzaei R; Sakizadeh M Environ Sci Pollut Res Int; 2016 Feb; 23(3):2758-69. PubMed ID: 26446732 [TBL] [Abstract][Full Text] [Related]
15. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content. Liu W; Du P; Zhao Z; Zhang L Sci Rep; 2016 Apr; 6():23889. PubMed ID: 27051998 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. Ding Q; Wang Y; Zhuang D J Environ Manage; 2018 Apr; 212():23-31. PubMed ID: 29427938 [TBL] [Abstract][Full Text] [Related]
17. Ecological Risk and Human Health Implications of Heavy Metals Contamination of Surface Soil in E-Waste Recycling Sites in Douala, Cameroun. Ouabo RE; Ogundiran MB; Sangodoyin AY; Babalola BA J Health Pollut; 2019 Mar; 9(21):190310. PubMed ID: 30931170 [TBL] [Abstract][Full Text] [Related]
18. Improvement of water table interpolation and groundwater storage volume using fuzzy computations. Masoumi Z; Rezaei A; Maleki J Environ Monit Assess; 2019 May; 191(6):401. PubMed ID: 31134353 [TBL] [Abstract][Full Text] [Related]
19. Improving the mapping accuracy of soil heavy metals through an adaptive multi-fidelity interpolation method. Ju L; Guo S; Ruan X; Wang Y Environ Pollut; 2023 Aug; 330():121827. PubMed ID: 37187280 [TBL] [Abstract][Full Text] [Related]
20. Accuracy Assessment of Kriging, artificial neural network, and a hybrid approach integrating spatial and terrain data in estimating and mapping of soil organic carbon. Kılıç M; Gündoğan R; Günal H; Cemek B PLoS One; 2022; 17(5):e0268658. PubMed ID: 35617376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]