BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32509441)

  • 1. Agreement between the GAITRite
    Vítečková S; Horáková H; Poláková K; Krupička R; Růžička E; Brožová H
    PeerJ; 2020; 8():e8835. PubMed ID: 32509441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent Validity of a Commercial Wireless Trunk Triaxial Accelerometer System for Gait Analysis.
    De Ridder R; Lebleu J; Willems T; De Blaiser C; Detrembleur C; Roosen P
    J Sport Rehabil; 2019 Aug; 28(6):. PubMed ID: 30747572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparability between wearable inertial sensors and an electronic walkway for spatiotemporal and relative phase data in young children aged 6-11 years.
    Carroll K; Kennedy RA; Koutoulas V; Werake U; Bui M; Kraan CM
    Gait Posture; 2024 Jun; 111():30-36. PubMed ID: 38615566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters.
    Rudisch J; Jöllenbeck T; Vogt L; Cordes T; Klotzbier TJ; Vogel O; Wollesen B
    Gait Posture; 2021 Mar; 85():55-64. PubMed ID: 33516094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent Validity of the Zeno Walkway for Measuring Spatiotemporal Gait Parameters in Older Adults.
    Vallabhajosula S; Humphrey SK; Cook AJ; Freund JE
    J Geriatr Phys Ther; 2019; 42(3):E42-E50. PubMed ID: 29286982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait.
    Nelson AJ; Zwick D; Brody S; Doran C; Pulver L; Rooz G; Sadownick M; Nelson R; Rothman J
    NeuroRehabilitation; 2002; 17(3):255-62. PubMed ID: 12237507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal gait pattern emerges during curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed.
    Turcato AM; Godi M; Giardini M; Arcolin I; Nardone A; Giordano A; Schieppati M
    PLoS One; 2018; 13(5):e0197264. PubMed ID: 29750815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents.
    Carroll K; Kennedy RA; Koutoulas V; Bui M; Kraan CM
    Gait Posture; 2022 Jan; 91():19-25. PubMed ID: 34628218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agreement between the GAITRite walkway system and a stopwatch-footfall count method for measurement of temporal and spatial gait parameters.
    Youdas JW; Hollman JH; Aalbers MJ; Ahrenholz HN; Aten RA; Cremers JJ
    Arch Phys Med Rehabil; 2006 Dec; 87(12):1648-52. PubMed ID: 17141647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors.
    Soulard J; Vaillant J; Baillet A; Gaudin P; Vuillerme N
    JMIR Mhealth Uhealth; 2021 Nov; 9(11):e27087. PubMed ID: 34751663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy validation of a wearable IMU-based gait analysis in healthy female.
    He Y; Chen Y; Tang L; Chen J; Tang J; Yang X; Su S; Zhao C; Xiao N
    BMC Sports Sci Med Rehabil; 2024 Jan; 16(1):2. PubMed ID: 38167148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Characteristics under Imposed Challenge Speed Conditions in Patients with Parkinson's Disease During Overground Walking.
    Lee M; Youm C; Noh B; Park H; Cheon SM
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32290054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Body-Worn Sensors for Gait Analysis During a 2-min Walk Test in Children.
    Shieh V; Zampieri C; Sansare A; Collins J; Bulea TC; Jain M
    J Meas Phys Behav; 2022 Jun; 5(2):111-119. PubMed ID: 37538346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent validity of the ZeroWire® footswitch system for the measurement of temporal gait parameters.
    Pradeau C; Sturbois-Nachef N; Allart E
    Gait Posture; 2020 Oct; 82():133-137. PubMed ID: 32927219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Bout Length on Gait Measures in People with and without Parkinson's Disease during Daily Life.
    Shah VV; McNames J; Harker G; Mancini M; Carlson-Kuhta P; Nutt JG; El-Gohary M; Curtze C; Horak FB
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of an inertial sensor-based system for the assessment of spatio-temporal parameters in people with multiple sclerosis.
    Zahn A; Koch V; Schreff L; Oschmann P; Winkler J; Gaßner H; Müller R
    Front Neurol; 2023; 14():1164001. PubMed ID: 37153677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of step-synchronized vibration stimulation of soles on gait in Parkinson's disease: a pilot study.
    Novak P; Novak V
    J Neuroeng Rehabil; 2006 May; 3():9. PubMed ID: 16674823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a Wearable System for Lower Extremity Assessment.
    Zhang H; Song Y; Li C; Dou Y; Wang D; Wu Y; Chen X; Liu D
    Orthop Surg; 2023 Nov; 15(11):2911-2917. PubMed ID: 37545175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Personalized Orthopedic Care: Validation of a Smart Knee Brace.
    McPherson A; McDaid AJ; Ward S
    Digit Biomark; 2024; 8(1):75-82. PubMed ID: 38655376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wearable Sensor System to Measure Step-Based Gait Parameters for Parkinson's Disease Rehabilitation.
    Muthukrishnan N; Abbas JJ; Krishnamurthi N
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.