BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32509533)

  • 1. Efficacy of bezafibrate in two patients with mitochondrial trifunctional protein deficiency.
    Suyama T; Shimura M; Fushimi T; Kuranobu N; Ichimoto K; Matsunaga A; Takayanagi M; Murayama K
    Mol Genet Metab Rep; 2020 Sep; 24():100610. PubMed ID: 32509533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency.
    Yamada K; Taketani T
    J Hum Genet; 2019 Feb; 64(2):73-85. PubMed ID: 30401918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan.
    Yamada K; Shiraishi H; Oki E; Ishige M; Fukao T; Hamada Y; Sakai N; Ochi F; Watanabe A; Kawakami S; Kuzume K; Watanabe K; Sameshima K; Nakamagoe K; Tamaoka A; Asahina N; Yokoshiki S; Miyakoshi T; Ono K; Oba K; Isoe T; Hayashi H; Yamaguchi S; Sato N
    Mol Genet Metab Rep; 2018 Jun; 15():55-63. PubMed ID: 29552494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medium branched chain fatty acids improve the profile of tricarboxylic acid cycle intermediates in mitochondrial fatty acid β-oxidation deficient cells: A comparative study.
    Karunanidhi A; Van't Land C; Rajasundaram D; Grings M; Vockley J; Mohsen AW
    J Inherit Metab Dis; 2022 May; 45(3):541-556. PubMed ID: 35076099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic control during exercise with and without medium-chain triglycerides (MCT) in children with long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) or trifunctional protein (TFP) deficiency.
    Gillingham MB; Scott B; Elliott D; Harding CO
    Mol Genet Metab; 2006; 89(1-2):58-63. PubMed ID: 16876451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders.
    Djouadi F; Aubey F; Schlemmer D; Ruiter JP; Wanders RJ; Strauss AW; Bastin J
    Hum Mol Genet; 2005 Sep; 14(18):2695-703. PubMed ID: 16115821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnosis, genetic characterization and clinical follow up of mitochondrial fatty acid oxidation disorders in the new era of expanded newborn screening: A single centre experience.
    Maguolo A; Rodella G; Dianin A; Nurti R; Monge I; Rigotti E; Cantalupo G; Salviati L; Tucci S; Pellegrini F; Molinaro G; Lupi F; Tonin P; Pasini A; Campostrini N; Ion Popa F; Teofoli F; Vincenzi M; Camilot M; Piacentini G; Bordugo A
    Mol Genet Metab Rep; 2020 Sep; 24():100632. PubMed ID: 32793418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnosis, Treatment, and Clinical Outcome of Patients with Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxy Acyl-CoA Dehydrogenase Deficiency.
    De Biase I; Viau KS; Liu A; Yuzyuk T; Botto LD; Pasquali M; Longo N
    JIMD Rep; 2017; 31():63-71. PubMed ID: 27117294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bezafibrate can be a new treatment option for mitochondrial fatty acid oxidation disorders: evaluation by in vitro probe acylcarnitine assay.
    Yamaguchi S; Li H; Purevsuren J; Yamada K; Furui M; Takahashi T; Mushimoto Y; Kobayashi H; Hasegawa Y; Taketani T; Fukao T; Fukuda S
    Mol Genet Metab; 2012 Sep; 107(1-2):87-91. PubMed ID: 22841441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical and genetic characteristics of patients with fatty acid oxidation disorders identified by newborn screening.
    Kang E; Kim YM; Kang M; Heo SH; Kim GH; Choi IH; Choi JH; Yoo HW; Lee BH
    BMC Pediatr; 2018 Mar; 18(1):103. PubMed ID: 29519241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan; 2nd report QOL survey.
    Shiraishi H; Yamada K; Oki E; Ishige M; Fukao T; Hamada Y; Sakai N; Ochi F; Watanabe A; Kawakami S; Kuzume K; Watanabe K; Sameshima K; Nakamagoe K; Tamaoka A; Asahina N; Yokoshiki S; Miyakoshi T; Oba K; Isoe T; Hayashi H; Yamaguchi S; Sato N
    Mol Genet Metab Rep; 2019 Sep; 20():100496. PubMed ID: 31372341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: Selective screening vs. expanded newborn screening.
    Shibata N; Hasegawa Y; Yamada K; Kobayashi H; Purevsuren J; Yang Y; Dung VC; Khanh NN; Verma IC; Bijarnia-Mahay S; Lee DH; Niu DM; Hoffmann GF; Shigematsu Y; Fukao T; Fukuda S; Taketani T; Yamaguchi S
    Mol Genet Metab Rep; 2018 Sep; 16():5-10. PubMed ID: 29946514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-chain fatty acid oxidation during early human development.
    Oey NA; den Boer ME; Wijburg FA; Vekemans M; Augé J; Steiner C; Wanders RJ; Waterham HR; Ruiter JP; Attié-Bitach T
    Pediatr Res; 2005 Jun; 57(6):755-9. PubMed ID: 15845636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of heat stress and bezafibrate on mitochondrial beta-oxidation: comparison between cultured cells from normal and mitochondrial fatty acid oxidation disorder children using in vitro probe acylcarnitine profiling assay.
    Li H; Fukuda S; Hasegawa Y; Kobayashi H; Purevsuren J; Mushimoto Y; Yamaguchi S
    Brain Dev; 2010 May; 32(5):362-70. PubMed ID: 19589653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial trifunctional protein deficiency in human cultured fibroblasts: effects of bezafibrate.
    Djouadi F; Habarou F; Le Bachelier C; Ferdinandusse S; Schlemmer D; Benoist JF; Boutron A; Andresen BS; Visser G; de Lonlay P; Olpin S; Fukao T; Yamaguchi S; Strauss AW; Wanders RJ; Bastin J
    J Inherit Metab Dis; 2016 Jan; 39(1):47-58. PubMed ID: 26109258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bezafibrate activation of PPAR drives disturbances in mitochondrial redox bioenergetics and decreases the viability of cells from patients with VLCAD deficiency.
    Lund M; Andersen KG; Heaton R; Hargreaves IP; Gregersen N; Olsen RKJ
    Biochim Biophys Acta Mol Basis Dis; 2021 Jun; 1867(6):166100. PubMed ID: 33549744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop.
    Spiekerkoetter U; Lindner M; Santer R; Grotzke M; Baumgartner MR; Boehles H; Das A; Haase C; Hennermann JB; Karall D; de Klerk H; Knerr I; Koch HG; Plecko B; Röschinger W; Schwab KO; Scheible D; Wijburg FA; Zschocke J; Mayatepek E; Wendel U
    J Inherit Metab Dis; 2009 Aug; 32(4):488-97. PubMed ID: 19399638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat stress deteriorates mitochondrial beta-oxidation of long-chain fatty acids in cultured fibroblasts with fatty acid beta-oxidation disorders.
    Li H; Fukuda S; Hasegawa Y; Purevsuren J; Kobayashi H; Mushimoto Y; Yamaguchi S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jun; 878(20):1669-72. PubMed ID: 20207594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outcomes of mitochondrial long chain fatty acid oxidation and carnitine defects from a single center metabolic genetics clinic.
    Ambrose A; Sheehan M; Bahl S; Athey T; Ghai-Jain S; Chan A; Mercimek-Andrews S
    Orphanet J Rare Dis; 2022 Sep; 17(1):360. PubMed ID: 36109795
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.