BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32509742)

  • 1. Development of a Multi-Pulse Conductivity Model for Liver Tissue Treated With Pulsed Electric Fields.
    Zhao Y; Zheng S; Beitel-White N; Liu H; Yao C; Davalos RV
    Front Bioeng Biotechnol; 2020; 8():396. PubMed ID: 32509742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Conductivity Changes During High-Frequency Irreversible Electroporation for Treatment Planning.
    Zhao Y; Bhonsle S; Dong S; Lv Y; Liu H; Safaai-Jazi A; Davalos RV; Yao C
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1810-1819. PubMed ID: 29989932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields.
    Pliquett U; Nuccitelli R
    Bioelectrochemistry; 2014 Dec; 100():62-8. PubMed ID: 24680133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of electric field distribution in tissues during electroporation.
    Corovic S; Lackovic I; Sustaric P; Sustar T; Rodic T; Miklavcic D
    Biomed Eng Online; 2013 Feb; 12():16. PubMed ID: 23433433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning.
    Neal RE; Garcia PA; Robertson JL; Davalos RV
    IEEE Trans Biomed Eng; 2012 Apr; 59(4):1076-85. PubMed ID: 22231669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Tissue Analysis on the Impact of Electroporation on Electrical and Thermal Properties.
    Beitel-White N; Lorenzo MF; Zhao Y; Brock RM; Coutermarsh-Ott S; Allen IC; Manuchehrabadi N; Davalos RV
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):771-782. PubMed ID: 32746081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental characterization of intrapulse tissue conductivity changes for electroporation.
    Neal RE; Garcia PA; Robertson JL; Davalos RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5581-4. PubMed ID: 22255604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining tissue conductivity in tissue ablation by nanosecond pulsed electric fields.
    Oshin EA; Guo S; Jiang C
    Bioelectrochemistry; 2022 Feb; 143():107949. PubMed ID: 34583212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Nonlinearity and Dispersion in Tissue Impedance During High-Frequency Electroporation.
    Bhonsle S; Lorenzo MF; Safaai-Jazi A; Davalos RV
    IEEE Trans Biomed Eng; 2018 Oct; 65(10):2190-2201. PubMed ID: 29989955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models.
    Neal RE; Garcia PA; Kavnoudias H; Rosenfeldt F; Mclean CA; Earl V; Bergman J; Davalos RV; Thomson KR
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):561-9. PubMed ID: 25265626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joule heating during solid tissue electroporation.
    Pliquett U
    Med Biol Eng Comput; 2003 Mar; 41(2):215-9. PubMed ID: 12691444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation.
    Mi Y; Rui S; Li C; Yao C; Xu J; Bian C; Tang X
    Med Biol Eng Comput; 2017 Jul; 55(7):1109-1122. PubMed ID: 27853990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation.
    Mahnič-Kalamiza S; Kotnik T; Miklavčič D
    BMC Med Educ; 2012 Oct; 12():102. PubMed ID: 23107609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Dependent Finite Element Analysis of In Vivo Electrochemotherapy Treatment.
    Pintar M; Langus J; Edhemović I; Brecelj E; Kranjc M; Sersa G; Šuštar T; Rodič T; Miklavčič D; Kotnik T; Kos B
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818790510. PubMed ID: 30089424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.
    Serša I; Kranjc M; Miklavčič D
    Biomed Eng Online; 2015; 14 Suppl 3(Suppl 3):S6. PubMed ID: 26356233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses.
    Bhonsle SP; Arena CB; Sweeney DC; Davalos RV
    Biomed Eng Online; 2015; 14 Suppl 3(Suppl 3):S3. PubMed ID: 26355870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer Nanoparticles Enhance Irreversible Electroporation In Vitro.
    Petrella RA; Levit SL; Fesmire CC; Tang C; Sano MB
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2353-2362. PubMed ID: 35025737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process Analysis and Parameter Selection of Cardiomyocyte Electroporation Based on the Finite Element Method.
    Zhang H; Ji X; Zang L; Yan S; Wu X
    Cardiovasc Eng Technol; 2024 Feb; 15(1):22-38. PubMed ID: 37919538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ablation outcome of irreversible electroporation on potato monitored by impedance spectrum under multi-electrode system.
    Zhao Y; Liu H; Bhonsle SP; Wang Y; Davalos RV; Yao C
    Biomed Eng Online; 2018 Sep; 17(1):126. PubMed ID: 30236121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell electrofusion based on nanosecond/microsecond pulsed electric fields.
    Li C; Ke Q; Yao C; Mi Y; Liu H; Lv Y; Yao C
    PLoS One; 2018; 13(5):e0197167. PubMed ID: 29795594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.