BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32509982)

  • 21. Silicon seed priming attenuates cadmium toxicity in lettuce seedlings.
    Pereira AS; Bortolin GS; Dorneles AOS; Meneghello GE; do Amarante L; Mauch CR
    Environ Sci Pollut Res Int; 2021 May; 28(17):21101-21109. PubMed ID: 33405115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination.
    Zhang R; Zhang H; Tu C; Hu X; Li L; Luo Y; Christie P
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):11109-17. PubMed ID: 25794580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Foliar Application of ZnO and Fe
    Gupta N; Jain SK; Tomar BS; Anand A; Singh J; Sagar V; Kumar R; Singh V; Chaubey T; Abd-Elsalam KA; Singh AK
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.
    Lin D; Xing B
    Environ Pollut; 2007 Nov; 150(2):243-50. PubMed ID: 17374428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.
    Groot SP; Surki AA; de Vos RC; Kodde J
    Ann Bot; 2012 Nov; 110(6):1149-59. PubMed ID: 22967856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of seed priming in circumventing thermodormancy in lettuce.
    Cantliffe DJ; Fischer JM; Nell TA
    Plant Physiol; 1984 Jun; 75(2):290-4. PubMed ID: 16663613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Imbibition of Pea (
    Szablińska-Piernik J; Lahuta LB; Stałanowska K; Horbowicz M
    Plants (Basel); 2022 Jul; 11(14):. PubMed ID: 35890510
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effect of Nano-ZnO on Seeds Germination Parameters of Different Tomatoes (
    Włodarczyk K; Smolińska B
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato.
    Nakaune M; Hanada A; Yin YG; Matsukura C; Yamaguchi S; Ezura H
    Plant Physiol Biochem; 2012 Mar; 52():28-37. PubMed ID: 22305065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seed Priming with Melatonin Improves the Seed Germination of Waxy Maize under Chilling Stress via Promoting the Antioxidant System and Starch Metabolism.
    Cao Q; Li G; Cui Z; Yang F; Jiang X; Diallo L; Kong F
    Sci Rep; 2019 Oct; 9(1):15044. PubMed ID: 31636312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seed priming with selenium and zinc nanoparticles modifies germination, growth, and yield of direct-seeded rice (Oryza sativa L.).
    Adhikary S; Biswas B; Chakraborty D; Timsina J; Pal S; Chandra Tarafdar J; Banerjee S; Hossain A; Roy S
    Sci Rep; 2022 May; 12(1):7103. PubMed ID: 35501374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulating effect of biogenic nanoparticles on the germination of basil (Ocimum basilicum L.) seeds.
    Sencan A; Kilic S; Kaya H
    Sci Rep; 2024 Jan; 14(1):1715. PubMed ID: 38242902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings.
    Romero-Rodríguez MC; Jorrín-Novo JV; Castillejo MA
    J Proteomics; 2019 Apr; 197():60-70. PubMed ID: 30408563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seed nano-priming with Zinc Oxide nanoparticles in rice mitigates drought and enhances agronomic profile.
    Waqas Mazhar M; Ishtiaq M; Hussain I; Parveen A; Hayat Bhatti K; Azeem M; Thind S; Ajaib M; Maqbool M; Sardar T; Muzammil K; Nasir N
    PLoS One; 2022; 17(3):e0264967. PubMed ID: 35324949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intraspecific Variation Along an Elevational Gradient Alters Seed Scarification Responses in the Polymorphic Tree Species
    Sugiyama A; Friday JB; Giardina CP; Jacobs DF
    Front Plant Sci; 2021; 12():716678. PubMed ID: 34804080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interference of Nanoparticulates in seed invigoration of Green gram.
    K V S; K UB; Singh C; K V R; Pal G; Kumar A; S P JK; K R; Kamble U; Kumar S; Garlapati VK
    Plant Physiol Biochem; 2023 Feb; 195():256-265. PubMed ID: 36652847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exposure to Copper Oxide Nanoparticles and Arsenic Causes Intergenerational Effects on Rice (Oryza sativa japonica Koshihikari) Seed Germination and Seedling Growth.
    Liu J; Wolfe K; Cobb GP
    Environ Toxicol Chem; 2019 Sep; 38(9):1978-1987. PubMed ID: 31162729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biogenic nanoparticle-mediated augmentation of seed germination, growth, and antioxidant level of Eruca sativa mill. varieties.
    Ushahra J; Bhati-Kushwaha H; Malik CP
    Appl Biochem Biotechnol; 2014 Sep; 174(2):729-38. PubMed ID: 25086920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (
    Jhansi K; Jayarambabu N; Reddy KP; Reddy NM; Suvarna RP; Rao KV; Kumar VR; Rajendar V
    3 Biotech; 2017 Aug; 7(4):263. PubMed ID: 28791210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress.
    Xin X; Zhao F; Rho JY; Goodrich SL; Sumerlin BS; He Z
    Sci Total Environ; 2020 Nov; 745():141055. PubMed ID: 32736110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.