These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32509984)

  • 1. Modeling and compensation of hysteresis in piezoelectric actuators.
    Yu Z; Wu Y; Fang Z; Sun H
    Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and Compensation for Asymmetrical and Dynamic Hysteresis of Piezoelectric Actuators Using a Dynamic Delay Prandtl-Ishlinskii Model.
    Wang W; Han F; Chen Z; Wang R; Wang C; Lu K; Wang J; Ju B
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Digitized Representation of the Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Piezoelectric Actuator Hysteresis.
    Zhou C; Feng C; Aye YN; Ang WT
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on Asymmetric Hysteresis Modeling and Compensation of Piezoelectric Actuators with PMPI Model.
    Wang W; Wang J; Chen Z; Wang R; Lu K; Sang Z; Ju B
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32235522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hysteresis Characteristics and MPI Compensation of Two-Dimensional Piezoelectric Positioning Stage.
    Wang W; Zhang J; Xu M; Chen G
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and Compensation of Dynamic Hysteresis with Force-Voltage Coupling for Piezoelectric Actuators.
    Wang W; Wang J; Wang R; Chen Z; Han F; Lu K; Wang C; Xu Z; Ju B
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model.
    Gu GY; Yang MJ; Zhu LM
    Rev Sci Instrum; 2012 Jun; 83(6):065106. PubMed ID: 22755661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model.
    An D; Li H; Xu Y; Zhang L
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.
    Rahman MA; Al Mamun A; Yao K
    Rev Sci Instrum; 2015 Aug; 86(8):085002. PubMed ID: 26329224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators.
    Jiang H; Ji H; Qiu J; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1200-10. PubMed ID: 20442032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Design Method of a High-Frequency-Response Fast Tool Servo System Based on a Full-Frequency Error Control Algorithm.
    Li Z; Guan C; Dai Y; Xue S; Yin L
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grasping force hysteresis compensation of a piezoelectric-actuated wire clamp with a modified inverse Prandtl-Ishlinskii model.
    Liang C; Wang F; Tian Y; Zhao X; Zhang D
    Rev Sci Instrum; 2017 Nov; 88(11):115101. PubMed ID: 29195342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteresis compensation of the Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map.
    Long Z; Wang R; Fang J; Dai X; Li Z
    Rev Sci Instrum; 2017 Jul; 88(7):075003. PubMed ID: 28764489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct identification of generalized Prandtl-Ishlinskii model inversion for asymmetric hysteresis compensation.
    Ko YR; Hwang Y; Chae M; Kim TH
    ISA Trans; 2017 Sep; 70():209-218. PubMed ID: 28716400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators.
    Gan J; Zhang X; Wu H
    Rev Sci Instrum; 2016 Mar; 87(3):035002. PubMed ID: 27036808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
    Gu G; Zhu L
    Rev Sci Instrum; 2010 Aug; 81(8):085104. PubMed ID: 20815625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling.
    Qin Y; Zhang Y; Duan H; Han J
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Bandwidth Repetitive Trajectory Tracking Control of Piezoelectric Actuators via Phase-Hysteresis Hybrid Compensation and Feedforward-Feedback Combined Control.
    Yuan J; Wu H; Qin Y; Han J
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedforward Controller of Ill-Conditioned Hysteresis Using Singularity-Free Prandtl-Ishlinskii Model.
    Tan UX; Latt WT; Shee CY; Riviere CN; Ang WT
    IEEE ASME Trans Mechatron; 2009 Oct; 14(5):598-605. PubMed ID: 19936032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Inverse Compensation of Cross-Coupling Hysteresis in Piezoceramics under Multi-Input.
    Zhou X; Zhang L; Yang Z; Sun L
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.