These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32509994)

  • 21. Coupling of hydrodynamic and electric interactions in adsorption of colloidal particles.
    Warszyński P
    Adv Colloid Interface Sci; 2000 Jan; 84(1-3):47-142. PubMed ID: 10696452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration.
    Kim MM; Zydney AL
    J Colloid Interface Sci; 2004 Jan; 269(2):425-31. PubMed ID: 14654403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-Infused Surfaces with Trapped Air (LISTA) for Drag Force Reduction.
    Hemeda AA; Tafreshi HV
    Langmuir; 2016 Mar; 32(12):2955-62. PubMed ID: 26977775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hydrodynamic effects of shape and size change during reconfiguration of a flexible macroalga.
    Boller ML; Carrington E
    J Exp Biol; 2006 May; 209(Pt 10):1894-903. PubMed ID: 16651555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Axisymmetric shapes and forces resulting from the interaction of a particle with a solidifying interface.
    Hadji L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041404. PubMed ID: 12443204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.
    Paunov VN; Al-Shehri H; Horozov TS
    Phys Chem Chem Phys; 2016 Sep; 18(38):26495-26508. PubMed ID: 27711696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effective Interactions between Chemically Active Colloids and Interfaces.
    Popescu MN; Uspal WE; Domínguez A; Dietrich S
    Acc Chem Res; 2018 Dec; 51(12):2991-2997. PubMed ID: 30403132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mean force on a small sphere in a sound field in a viscous fluid.
    Danilov SD; Mironov MA
    J Acoust Soc Am; 2000 Jan; 107(1):143-53. PubMed ID: 10641627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drag force of a particle moving axisymmetrically in open or closed cavities.
    Chen SB
    J Chem Phys; 2011 Jul; 135(1):014904. PubMed ID: 21744918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Friction drag of a spherical particle in a liquid crystal above the isotropic-nematic transition.
    Fukuda J; Stark H; Yokoyama H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021701. PubMed ID: 16196579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.
    Knoerzer M; Szydzik C; Tovar-Lopez FJ; Tang X; Mitchell A; Khoshmanesh K
    Electrophoresis; 2016 Feb; 37(4):645-57. PubMed ID: 26643028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of hydrodynamic drag forces and drag coefficients on human leg/foot model during knee exercise.
    Pöyhönen T; Keskinen KL; Hautala A; Mälkiä E
    Clin Biomech (Bristol, Avon); 2000 May; 15(4):256-60. PubMed ID: 10675666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical investigation of the vertical plunging force of a spherical intruder into a prefluidized granular bed.
    Xu Y; Padding JT; Kuipers JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062203. PubMed ID: 25615081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deposition of Colloidal Drops Containing Ellipsoidal Particles: Competition between Capillary and Hydrodynamic Forces.
    Kim DO; Pack M; Hu H; Kim H; Sun Y
    Langmuir; 2016 Nov; 32(45):11899-11906. PubMed ID: 27788012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brownian diffusion of a partially wetted colloid.
    Boniello G; Blanc C; Fedorenko D; Medfai M; Mbarek NB; In M; Gross M; Stocco A; Nobili M
    Nat Mater; 2015 Sep; 14(9):908-11. PubMed ID: 26147846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane.
    Dubov AL; Schmieschek S; Asmolov ES; Harting J; Vinogradova OI
    J Chem Phys; 2014 Jan; 140(3):034707. PubMed ID: 25669407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffusive behavior of a thin particle layer in fluid by hydrodynamic interaction.
    Harada S; Otomo R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066311. PubMed ID: 20365271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.