These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32510067)

  • 1. Vortex formation of spherical self-propelled particles around a circular obstacle.
    Pan JX; Wei H; Qi MJ; Wang HF; Zhang JJ; Tian WD; Chen K
    Soft Matter; 2020 Jun; 16(23):5545-5551. PubMed ID: 32510067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-propelled particle transport in regular arrays of rigid asymmetric obstacles.
    Potiguar FQ; Farias GA; Ferreira WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012307. PubMed ID: 25122303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous symmetry breaking induced unidirectional rotation of a chain-grafted colloidal particle in the active bath.
    Li HS; Wang C; Tian WD; Ma YQ; Xu C; Zheng N; Chen K
    Soft Matter; 2017 Nov; 13(44):8031-8038. PubMed ID: 29034931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transition of vortexlike self-propelled particles induced by a hostile particle.
    Duan H; Zhang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012701. PubMed ID: 26274197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vortex with fourfold defect lines in a simple model of self-propelled particles.
    Seyed-Allaei H; Ejtehadi MR
    Phys Rev E; 2016 Mar; 93(3):032113. PubMed ID: 27078298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic clustering of driven colloidal particles on a circular path.
    Okubo S; Shibata S; Kawamura YS; Ichikawa M; Kimura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032303. PubMed ID: 26465469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Vortices with Dynamic Rotation Emerged from Monolayer Collective Motion of Gliding
    Nakane D; Odaka S; Suzuki K; Nishizaka T
    J Bacteriol; 2021 Jun; 203(14):e0007321. PubMed ID: 33927052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.
    Curran PJ; Desoky WM; Milosević MV; Chaves A; Laloë JB; Moodera JS; Bending SJ
    Sci Rep; 2015 Oct; 5():15569. PubMed ID: 26492969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotation reversal of a ratchet gear powered by active particles.
    Xu GH; Ai BQ
    Soft Matter; 2021 Aug; 17(30):7124-7132. PubMed ID: 34259274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption of self-propelled particles into a dense porous medium.
    Qian BS; Tian WD; Chen K
    Phys Chem Chem Phys; 2021 Sep; 23(36):20388-20397. PubMed ID: 34491254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organized vortices of circling self-propelled particles and curved active flagella.
    Yang Y; Qiu F; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect dynamics in clusters of self-propelled rods in circular confinement.
    Wang Z; Si T; Hao J; Guan Y; Qin F; Yang B; Cao W
    Eur Phys J E Soft Matter; 2019 Nov; 42(11):150. PubMed ID: 31773335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method.
    Liao X; Si W; Yuan Z; Sun H; Qin J; Wang Q; Heng PA; Xiangyun Liao ; Weixin Si ; Zhiyong Yuan ; Hanqiu Sun ; Jing Qin ; Qiong Wang ; Pheng-Ann Heng
    IEEE Trans Vis Comput Graph; 2018 Mar; 24(3):1260-1273. PubMed ID: 28186900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous vortex formation by microswimmers with retarded attractions.
    Wang X; Chen PC; Kroy K; Holubec V; Cichos F
    Nat Commun; 2023 Jan; 14(1):56. PubMed ID: 36599830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex arrays and mesoscale turbulence of self-propelled particles.
    Grossmann R; Romanczuk P; Bär M; Schimansky-Geier L
    Phys Rev Lett; 2014 Dec; 113(25):258104. PubMed ID: 25554911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COLLECTIVE VORTEX BEHAVIORS: DIVERSITY, PROXIMATE, AND ULTIMATE CAUSES OF CIRCULAR ANIMAL GROUP MOVEMENTS.
    Delcourt J; Bode NW; Denoël M
    Q Rev Biol; 2016 Mar; 91(1):1-24. PubMed ID: 27192777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of self-propelled particles across a porous medium: trapping, clogging, and the Matthew effect.
    Shi SJ; Li HS; Feng GQ; Tian WD; Chen K
    Phys Chem Chem Phys; 2020 Jul; 22(25):14052-14060. PubMed ID: 32568323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change in collective motion of colloidal particles driven by an optical vortex with driving force and spatial confinement.
    Saito K; Okubo S; Kimura Y
    Soft Matter; 2018 Jul; 14(29):6037-6042. PubMed ID: 29978882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A particle-field approach bridges phase separation and collective motion in active matter.
    Großmann R; Aranson IS; Peruani F
    Nat Commun; 2020 Oct; 11(1):5365. PubMed ID: 33097711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.