These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32510195)

  • 1. Confined Growth and Controlled Coalescence/Self-Removal of Condensate Microdrops on a Spatially Heterogeneously Patterned Superhydrophilic-Superhydrophobic Surface.
    Xing D; Wang R; Wu F; Gao X
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29946-29952. PubMed ID: 32510195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdrop-Assisted Microdomain Hydrophilicization of Superhydrophobic Surfaces for High-Efficiency Nucleation and Self-Removal of Condensate Microdrops.
    Xing D; Wu F; Wang R; Zhu J; Gao X
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7553-7558. PubMed ID: 30667209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Self-Propelling of Small-Scale Condensed Microdrops by Closely Packed ZnO Nanoneedles.
    Tian J; Zhu J; Guo HY; Li J; Feng XQ; Gao X
    J Phys Chem Lett; 2014 Jun; 5(12):2084-8. PubMed ID: 26270496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance.
    Zhu J; Luo Y; Tian J; Li J; Gao X
    ACS Appl Mater Interfaces; 2015 May; 7(20):10660-5. PubMed ID: 25966966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.
    Yu Z; Yun FF; Wang Y; Yao L; Dou S; Liu K; Jiang L; Wang X
    Small; 2017 Sep; 13(36):. PubMed ID: 28719031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results.
    Hirai Y; Mayama H; Matsuo Y; Shimomura M
    ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E; McCarthy M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces.
    Luo Y; Li J; Zhu J; Zhao Y; Gao X
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4876-9. PubMed ID: 25693502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
    Aili A; Li H; Alhosani MH; Zhang T
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the Role of Dynamic Wettability for Condensate Microdrop Self-Propelling Based on Designed Superhydrophobic TiO
    Zhang S; Huang J; Tang Y; Li S; Ge M; Chen Z; Zhang K; Lai Y
    Small; 2017 Jan; 13(4):. PubMed ID: 27152963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.
    Ölçeroğlu E; Hsieh CY; Rahman MM; Lau KK; McCarthy M
    Langmuir; 2014 Jul; 30(25):7556-66. PubMed ID: 24882117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Twice Electrochemical-Etching Method to Fabricate Superhydrophobic-Superhydrophilic Patterns for Biomimetic Fog Harvest.
    Yang X; Song J; Liu J; Liu X; Jin Z
    Sci Rep; 2017 Aug; 7(1):8816. PubMed ID: 28821794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise?
    Thomas TM; Sinha Mahapatra P; Ganguly R; Tiwari MK
    Langmuir; 2023 Apr; 39(15):5396-5407. PubMed ID: 37014297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces.
    Lv LB; Cui TL; Zhang B; Wang HH; Li XH; Chen JS
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15165-9. PubMed ID: 26440454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically Branched Siloxane Brushes for Efficient Harvesting of Atmospheric Water.
    Song J; Liu J; Li M; Li S; Kappl M; Butt HJ; Hou Y; Yeung KL
    Small; 2023 Sep; 19(37):e2301561. PubMed ID: 37096929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging applications of superhydrophilic-superhydrophobic micropatterns.
    Ueda E; Levkin PA
    Adv Mater; 2013 Mar; 25(9):1234-47. PubMed ID: 23345109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.
    Feng J; Qin Z; Yao S
    Langmuir; 2012 Apr; 28(14):6067-75. PubMed ID: 22424422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Condensate microdrop self-propelling aluminum surfaces based on controllable fabrication of alumina rod-capped nanopores.
    Zhao Y; Luo Y; Li J; Yin F; Zhu J; Gao X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11079-82. PubMed ID: 25981353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.