BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32510324)

  • 1. Biochemical basis for the regulation of biosynthesis of antiparasitics by bacterial hormones.
    Kapoor I; Olivares P; Nair SK
    Elife; 2020 Jun; 9():. PubMed ID: 32510324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of AvaR1, a butenolide-autoregulator receptor for biosynthesis of a Streptomyces hormone in Streptomyces avermitilis.
    Sultan SP; Kitani S; Miyamoto KT; Iguchi H; Atago T; Ikeda H; Nihira T
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9581-9591. PubMed ID: 27541747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AvaR1, a Butenolide-Type Autoregulator Receptor in
    Zhu J; Chen Z; Li J; Wen Y
    Front Microbiol; 2017; 8():2577. PubMed ID: 29312254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AvaR2, a pseudo γ-butyrolactone receptor homologue from Streptomyces avermitilis, is a pleiotropic repressor of avermectin and avenolide biosynthesis and cell growth.
    Zhu J; Sun D; Liu W; Chen Z; Li J; Wen Y
    Mol Microbiol; 2016 Nov; 102(4):562-578. PubMed ID: 27502190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butenolides from Streptomyces albus J1074 Act as External Signals To Stimulate Avermectin Production in Streptomyces avermitilis.
    Nguyen TB; Kitani S; Shimma S; Nihira T
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain.
    Wang JB; Zhang F; Pu JY; Zhao J; Zhao QF; Tang GL
    Biotechnol Lett; 2014 Apr; 36(4):813-9. PubMed ID: 24322771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis.
    Kitani S; Miyamoto KT; Takamatsu S; Herawati E; Iguchi H; Nishitomi K; Uchida M; Nagamitsu T; Omura S; Ikeda H; Nihira T
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16410-5. PubMed ID: 21930904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streptomyces global regulators AfsR and AfsS interact to co-regulate antibiotic production and morphological development.
    Hao Y; Liu W; Li X; Wen Y
    Microb Biotechnol; 2024 Jan; 17(1):e14319. PubMed ID: 37986689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of cryptic phthoxazolin A production in Streptomyces avermitilis by the disruption of autoregulator-receptor homologue AvaR3.
    Suroto DA; Kitani S; Miyamoto KT; Sakihama Y; Arai M; Ikeda H; Nihira T
    J Biosci Bioeng; 2017 Dec; 124(6):611-617. PubMed ID: 28728974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avermectin: biochemical and molecular basis of its biosynthesis and regulation.
    Yoon YJ; Kim ES; Hwang YS; Choi CY
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):626-34. PubMed ID: 14689246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of butenolide regulatory system controlling secondary metabolism in Streptomyces albus J1074.
    Ahmed Y; Rebets Y; Tokovenko B; Brötz E; Luzhetskyy A
    Sci Rep; 2017 Aug; 7(1):9784. PubMed ID: 28852167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis.
    He F; Liu W; Sun D; Luo S; Chen Z; Wen Y; Li J
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):399-409. PubMed ID: 24220792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system.
    Im JH; Kim MG; Kim ES
    J Microbiol Biotechnol; 2007 Mar; 17(3):534-8. PubMed ID: 18050961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins.
    Bunet R; Song L; Mendes MV; Corre C; Hotel L; Rouhier N; Framboisier X; Leblond P; Challis GL; Aigle B
    J Bacteriol; 2011 Mar; 193(5):1142-53. PubMed ID: 21193612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulatory cascades of antibiotic production in Streptomyces.
    Xia H; Zhan X; Mao XM; Li YQ
    World J Microbiol Biotechnol; 2020 Jan; 36(1):13. PubMed ID: 31897764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional insights into the mode of DNA and ligand binding of the TetR family regulator TylP from
    Ray S; Maitra A; Biswas A; Panjikar S; Mondal J; Anand R
    J Biol Chem; 2017 Sep; 292(37):15301-15311. PubMed ID: 28739805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a butenolide signaling system that regulates nikkomycin biosynthesis in
    Wang W; Zhang J; Liu X; Li D; Li Y; Tian Y; Tan H
    J Biol Chem; 2018 Dec; 293(52):20029-20040. PubMed ID: 30355730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for control of antibiotic production by a bacterial hormone.
    Zhou S; Bhukya H; Malet N; Harrison PJ; Rea D; Belousoff MJ; Venugopal H; Sydor PK; Styles KM; Song L; Cryle MJ; Alkhalaf LM; Fülöp V; Challis GL; Corre C
    Nature; 2021 Feb; 590(7846):463-467. PubMed ID: 33536618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WblA, a global regulator of antibiotic biosynthesis in Streptomyces.
    Nah HJ; Park J; Choi S; Kim ES
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33928363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Multidrug Efflux Pumps by TetR Family Transcriptional Repressor Negatively Affects Secondary Metabolism in Streptomyces coelicolor A3(2).
    Lei Y; Asamizu S; Ishizuka T; Onaka H
    Appl Environ Microbiol; 2023 Mar; 89(3):e0182222. PubMed ID: 36790176
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.