These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32510439)

  • 1. PEMIP: Post-fire erosion model inter-comparison project.
    Kampf SK; Gannon BM; Wilson C; Saavedra F; Miller ME; Heldmyer A; Livneh B; Nelson P; MacDonald L
    J Environ Manage; 2020 Aug; 268():110704. PubMed ID: 32510439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling phosphorus transport in an agricultural watershed using the WEPP model.
    Perez-Bidegain M; Helmers MJ; Cruse R
    J Environ Qual; 2010; 39(6):2121-9. PubMed ID: 21284310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving and calibrating channel erosion simulation in the Water Erosion Prediction Project (WEPP) model.
    Guo T; Srivastava A; Flanagan DC
    J Environ Manage; 2021 Aug; 291():112616. PubMed ID: 33964624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].
    Yang M; Li XZ; Yang ZP; Hu YM; Wen QC
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2512-9. PubMed ID: 18260457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk assessment of watershed erosion at Naesung Stream, South Korea.
    Ji U; Velleux M; Julien PY; Hwang M
    J Environ Manage; 2014 Apr; 136():16-26. PubMed ID: 24548823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The WEPP Model Application in a Small Watershed in the Loess Plateau.
    Han F; Ren L; Zhang X; Li Z
    PLoS One; 2016; 11(3):e0148445. PubMed ID: 26963704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapting the WEPP Hillslope Model and the TLS Technology to Predict Unpaved Road Soil Erosion.
    Wang Y; He W; Zhang T; Zhang Y; Cao L
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performances of the WEPP and WaNuLCAS models on soil erosion simulation in a tropical hillslope, Thailand.
    Onsamrarn W; Chittamart N; Tawornpruek S
    PLoS One; 2020; 15(11):e0241689. PubMed ID: 33147263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring and assessment of soil erosion at micro-scale and macro-scale in forests affected by fire damage in northern Iran.
    Akbarzadeh A; Ghorbani-Dashtaki S; Naderi-Khorasgani M; Kerry R; Taghizadeh-Mehrjardi R
    Environ Monit Assess; 2016 Dec; 188(12):699. PubMed ID: 27900655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land susceptibility to water and wind erosion risks in the East Africa region.
    Fenta AA; Tsunekawa A; Haregeweyn N; Poesen J; Tsubo M; Borrelli P; Panagos P; Vanmaercke M; Broeckx J; Yasuda H; Kawai T; Kurosaki Y
    Sci Total Environ; 2020 Feb; 703():135016. PubMed ID: 31734497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying pollutant loading from channel sources: Watershed-scale application of the River Erosion Model.
    Lammers RW; Bledsoe BP
    J Environ Manage; 2019 Mar; 234():104-114. PubMed ID: 30616182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the rusle and disturbed wepp erosion models for predicting soil loss in the first year after wildfire in NW Spain.
    Fernández C; Vega JA
    Environ Res; 2018 Aug; 165():279-285. PubMed ID: 29734029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models.
    Vieira DCS; Serpa D; Nunes JPC; Prats SA; Neves R; Keizer JJ
    Environ Res; 2018 Aug; 165():365-378. PubMed ID: 29803019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado.
    Anache JAA; Flanagan DC; Srivastava A; Wendland EC
    Sci Total Environ; 2018 May; 622-623():140-151. PubMed ID: 29212051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of construction-related land use change on streamflow and sediment yield.
    Santikari VP; Murdoch LC
    J Environ Manage; 2019 Dec; 252():109605. PubMed ID: 31610443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for spatially explicit representation of sub-watershed sediment yield, Southern California, USA.
    Booth DB; Leverich G; Downs PW; Dusterhoff S; Araya S
    Environ Manage; 2014 May; 53(5):968-84. PubMed ID: 24567071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling forest management effects on water and sediment yield from nested, paired watersheds in the interior Pacific Northwest, USA using WEPP.
    Srivastava A; Brooks ES; Dobre M; Elliot WJ; Wu JQ; Flanagan DC; Gravelle JA; Link TE
    Sci Total Environ; 2020 Jan; 701():134877. PubMed ID: 31731205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sediment yield as a desertification risk indicator.
    Vanmaercke M; Poesen J; Maetens W; de Vente J; Verstraeten G
    Sci Total Environ; 2011 Apr; 409(9):1715-25. PubMed ID: 21316738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing.
    Ozsoy G; Aksoy E; Dirim MS; Tumsavas Z
    Environ Manage; 2012 Oct; 50(4):679-94. PubMed ID: 22810626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.
    Vigiak O; Malagó A; Bouraoui F; Vanmaercke M; Poesen J
    Sci Total Environ; 2015 Dec; 538():855-75. PubMed ID: 26356993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.