BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32510613)

  • 1. Genetic screens reveal CCDC115 as a modulator of erythroid iron and heme trafficking.
    Sobh A; Loguinov A; Zhou J; Jenkitkasemwong S; Zeidan R; El Ahmadie N; Tagmount A; Knutson M; Fraenkel PG; Vulpe CD
    Am J Hematol; 2020 Sep; 95(9):1085-1098. PubMed ID: 32510613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity.
    Yien YY; Shi J; Chen C; Cheung JTM; Grillo AS; Shrestha R; Li L; Zhang X; Kafina MD; Kingsley PD; King MJ; Ablain J; Li H; Zon LI; Palis J; Burke MD; Bauer DE; Orkin SH; Koehler CM; Phillips JD; Kaplan J; Ward DM; Lodish HF; Paw BH
    J Biol Chem; 2018 Dec; 293(51):19797-19811. PubMed ID: 30366982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria Biogenesis Modulates Iron-Sulfur Cluster Synthesis to Increase Cellular Iron Uptake.
    La P; Oved JH; Ghiaccio V; Rivella S
    DNA Cell Biol; 2020 May; 39(5):756-765. PubMed ID: 32282232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A specialized pathway for erythroid iron delivery through lysosomal trafficking of transferrin receptor 2.
    Khalil S; Holy M; Grado S; Fleming R; Kurita R; Nakamura Y; Goldfarb A
    Blood Adv; 2017 Jun; 1(15):1181-1194. PubMed ID: 29296759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme-bound iron activates placenta growth factor in erythroid cells via erythroid Krüppel-like factor.
    Wang X; Mendelsohn L; Rogers H; Leitman S; Raghavachari N; Yang Y; Yau YY; Tallack M; Perkins A; Taylor JG; Noguchi CT; Kato GJ
    Blood; 2014 Aug; 124(6):946-54. PubMed ID: 24916507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels.
    Miles AL; Burr SP; Grice GL; Nathan JA
    Elife; 2017 Mar; 6():. PubMed ID: 28296633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical role for the co-repressor N-CoR in erythroid differentiation and heme synthesis.
    Zhang D; Cho E; Wong J
    Cell Res; 2007 Sep; 17(9):804-14. PubMed ID: 17768398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chianti zebrafish mutant provides a model for erythroid-specific disruption of transferrin receptor 1.
    Wingert RA; Brownlie A; Galloway JL; Dooley K; Fraenkel P; Axe JL; Davidson AJ; Barut B; Noriega L; Sheng X; Zhou Y; Zon LI
    Development; 2004 Dec; 131(24):6225-35. PubMed ID: 15563524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme-dependent up-regulation of the alpha-globin gene expression by transcriptional repressor Bach1 in erythroid cells.
    Tahara T; Sun J; Igarashi K; Taketani S
    Biochem Biophys Res Commun; 2004 Nov; 324(1):77-85. PubMed ID: 15464985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophages function as a ferritin iron source for cultured human erythroid precursors.
    Leimberg MJ; Prus E; Konijn AM; Fibach E
    J Cell Biochem; 2008 Mar; 103(4):1211-8. PubMed ID: 17902167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythropoiesis and transferrin receptors.
    Moura IC; Hermine O; Lacombe C; Mayeux P
    Curr Opin Hematol; 2015 May; 22(3):193-8. PubMed ID: 25767952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biology of Heme in Mammalian Erythroid Cells and Related Disorders.
    Fujiwara T; Harigae H
    Biomed Res Int; 2015; 2015():278536. PubMed ID: 26557657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.
    Hamdi A; Roshan TM; Kahawita TM; Mason AB; Sheftel AD; Ponka P
    Biochim Biophys Acta; 2016 Dec; 1863(12):2859-2867. PubMed ID: 27627839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MiR-218 Inhibits Erythroid Differentiation and Alters Iron Metabolism by Targeting ALAS2 in K562 Cells.
    Li Y; Liu S; Sun H; Yang Y; Qi H; Ding N; Zheng J; Dong X; Qu H; Zhang Z; Fang X
    Int J Mol Sci; 2015 Nov; 16(12):28156-68. PubMed ID: 26703568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell biology of heme.
    Ponka P
    Am J Med Sci; 1999 Oct; 318(4):241-56. PubMed ID: 10522552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.
    Ryu MS; Zhang D; Protchenko O; Shakoury-Elizeh M; Philpott CC
    J Clin Invest; 2017 May; 127(5):1786-1797. PubMed ID: 28375153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational regulation and deregulation in erythropoiesis.
    Vatikioti A; Karkoulia E; Ioannou M; Strouboulis J
    Exp Hematol; 2019 Jul; 75():11-20. PubMed ID: 31154069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression.
    Zolea F; Battaglia AM; Chiarella E; Malanga D; De Marco C; Bond HM; Morrone G; Costanzo F; Biamonte F
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29039805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis.
    Nath A; Rayabaram J; Ijee S; Bagchi A; Chaudhury AD; Roy D; Chambayil K; Singh J; Nakamura Y; Velayudhan SR
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TMEM14C is required for erythroid mitochondrial heme metabolism.
    Yien YY; Robledo RF; Schultz IJ; Takahashi-Makise N; Gwynn B; Bauer DE; Dass A; Yi G; Li L; Hildick-Smith GJ; Cooney JD; Pierce EL; Mohler K; Dailey TA; Miyata N; Kingsley PD; Garone C; Hattangadi SM; Huang H; Chen W; Keenan EM; Shah DI; Schlaeger TM; DiMauro S; Orkin SH; Cantor AB; Palis J; Koehler CM; Lodish HF; Kaplan J; Ward DM; Dailey HA; Phillips JD; Peters LL; Paw BH
    J Clin Invest; 2014 Oct; 124(10):4294-304. PubMed ID: 25157825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.